• Title/Summary/Keyword: voice coil actuator

Search Result 87, Processing Time 0.028 seconds

Modeling and control of a solenoid for high-speed actuation (솔레노이드의 고속 동작을 위한 모델링 및 제어)

  • Yoo, Seung-Ryeol;Shin, Dong-Hun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.1-5
    • /
    • 2011
  • Electronics in modern life have become more miniaturized and precise and new technology of electronic components has made these trends possible. The explosive demand of electronic components needs more high-speed and accurate performance of manufacturing processes. For high-speed actuation, solenoids, voice coil motors and piezo motors have been used. A solenoid actuator characterized by low price, available small size, and convenience is one of the main components of production equipments requiring compact and high-speed actuators. Since these actuators show millisecond order responsiveness, the improvement of 1~2msec is very important in industrial applications. In this paper, the mathematical model of the solenoid is formulated and simulated using SIMULINK$^{(R)}$. To verify the model, the responses for step input with open-loop control is obtained and compared with the simulation result. In order to improve the responsiveness, Hold voltage method is introduced and optimal value between spring constant and hold voltage is suggested.

Design and Control of Ultra-precision Dual Stage with Air bearings and Voice coil motor for nm scanning system (나노 정밀도 스캐닝 용 공기베어링과 보이스 코일 모터의 초정밀 이중 스테이지 설계 및 제어)

  • Kim K.H.;Choi Y.M.;Kim J.J.;Lee M.G.;Lee S.W.;Gweon D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1883-1886
    • /
    • 2005
  • In this paper, a decoupled dual servo (DDS) stage for ultra-precision scanning system with large working range is introduced. In general, dual servo systems consist of a fine stage for short range and a coarse stage for long range. The proposed DDS also consists of a $XY\theta$ fine stage for handling and carrying workpieces and one axis coarse stage. Its coarse stage consists of air bearing guide system and a coreless linear motor with force ripple. The fine has four voice coil motors(VCM) as its actuator. According to a VCM's nature, there are no mechanical connections between coils and magnetic circuits. Moreover, VCM doesn't have force ripples due to imperfections of commutation components of linear motor systems - currents and flux densities. However, due to the VCM's mechanical constraints the working range of the fine is about $25mm^2$. To break that hurdle, the coarse stage with linear motors is used to move the fine about 500mm. Because of the above reasons, the proposed DDS can achieve higher precision scanning than other stages with only one servo. With MATLAB's Sequential Quadratic Programming (SQP), the VCMs are optimally designed for the highest force under conditions and constraints such as thermal dissipations due to its coil, its size, and so on. And for their movements without any frictions, guide systems of the DDS are composed of air bearings. To get precisely their positions, a linear scale with 5nm resolution are used for the coarse stage's motion and three plane mirror laser interferometers with 5nm for the fine's $XY\theta$ motions. With them, on scanning the two stages have same trajectories. The control algorithm is named Parallel method. The embodied ultra-precision scanning system has sub 100nm following error and in-positioning stability.

  • PDF

Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module

  • Lee, Hyung-Kun;Choi, Nak-Jin;Jung, Sun-Kyung;Park, Kang-Ho;Jung, He-Won;Shim, Jae-Kyu;Ryu, Jae-Wook;Kim, Jong-Dae
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.695-702
    • /
    • 2009
  • We propose a lens-drive unit composed of an ionic polymer-metal composite (IPMC) for an auto-focus compact camera module in cellular phones to solve the power consumption problem of voice coil motors which are widely used in commercial products. In this research, an IPMC incorporated into a lens-drive unit is designed to implement a large displacement in low-power consumption by using an anisotropic plasma treatment. Experimental results show that a camera module containing IPMCs can control and maintain the position of the lens by using proportional integral derivative control with a photo-reflective position sensor despite the non-linear actuation behavior of IPMCs. We demonstrate that the fabrication and commercialization of a lens actuator that has a large displacement and low power consumption using IPMCs is possible in the near future.

Dynamic Responses and Fuzzy Control of a Simply Supported Beam Subjected to a Moving Mass

  • Kong, Yong-Sik;Ryu, Bong-Jo;Shin, Kwang-Bok;Lee, Gyu-Seop;Lee, Hong-Gi
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1371-1381
    • /
    • 2006
  • This paper deals with the active vibration control of a simply-supported beam traversed by a moving mass using fuzzy control. Governing equations for dynamic responses of a beam under a moving mass are derived by Galerkin's mode summation method, and the effect of forces (gravity force, Coliolis force, inertia force caused by the slope of the beam, transverse inertia force of the beam) due to the moving mass on the dynamic response of a beam is discussed. For the active control of dynamic deflection and vibration of a beam under the moving mass, the controller based on fuzzy logic is used and the experiments are conducted by VCM (voice coil motor) actuator to suppress the vibration of a beam. Through the numerical and experimental studies, the following conclusions were obtained. With increasing mass ratio y at a fixed velocity of the moving mass under the critical velocity, the position of moving mass at the maximum dynamic deflection moves to the right end of the beam. With increasing velocity of the moving mass at a fixed mass ratio ${\gamma}$, the position of moving mass at the maximum dynamic deflection moves to the right end of the beam too. The numerical predictions of dynamic deflection of the beam have a good agreement with the experimental results. With the fuzzy control, more than 50% reductions of dynamic deflection and residual vibration of the tested beam under the moving mass are obtained.

A Study on the Modeling and Control of High-Speed/High-Accuracy Position Control System (고속/정밀 위치제어시스템의 모델인 및 제어에 관한 연구)

  • Park, Min-Gyu;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.399-406
    • /
    • 2001
  • This paper presents a dynamic modeling and a sliding mode controller for the high-speed/high-accuracy position control system. The selected target system is the wire bonder assembly which is used in the semiconductor assembly process. This system is a reciprocating one around the pivot point that consists of VCM(voice coil motor) as an actuator and transducer horn as a bonding tool. For the modeling elements, the sys-tem is divided into electrical circuit, magnetic circuit and mechanical system. Each system is modeled using the bond graph method and united into the full system. Two major aims are considered in the design of the controller. The first one is that the horn must track the given reference trajectory. The second one is that the controller must be realizable by using the DSP board. Computer simulation and experimental results show that the designed sliding mode controller provides better performance than the PID controller.

  • PDF

Dynamic Modeling and Controller Design for Active Vibration Control of Elevator (엘리베이터 능동진동제어를 위한 동적 모델링 및 제어기 설계)

  • Kim, Ki-Young;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.71-76
    • /
    • 2008
  • This paper is concerned with the active vibration control of elevator by means of the active roller guide. To this end, a dynamic model for the horizontal vibration of the elevator consisting of a supporting frame, cage and active roller guides was derived using the energy method. Free vibration analysis was then carried out based on the equations of motion. Active vibration controller was designed based on the equations of motion using the LQR theory and applied to the numerical model. Rail irregularity and wind pressure variation were considered as external disturbance in the numerical simulations. The numerical results show that the active vibration control of elevator is possible.

  • PDF

Dynamic Analysis of HDD Spindle Motor Unit; Cover. Base (HDD 스핀들 모터 유니트 및 커버, 베이스의 동특성 해석)

  • 이성진;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.832-936
    • /
    • 1996
  • In this paper, we study a dynamic characteristics of HDD. HDD is constructed by spindle motor/disk unit, cover, base, E-block arm/suspension unit, and rotary actuator/voice coil motor. First, we make a FE model of spindle motor/disk unit and analyzed natural frequency/mode analytically and experimentally. Especially, the change of natural frequecy of spindle motor unit according to change of B.C is considered. Second, FE model of cover, base is made. Third, we assemble the above three FE mode, we get HEE assembly and dynamic analysis of HDD assembly is accomplished.

  • PDF

A Study on the Modeling and Control of High-Speed/High-Accuracy Position Control System (고속/정밀 위치제어시스템의 모델링 및 제어에 관한 연구)

  • 신호준;박민규;윤석찬;한창수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.83-89
    • /
    • 2000
  • This paper presents a dynamic modeling and a sliding mode controller for the high-speed / high-accuracy position control system. Selected target system is the wire bonder head assembly which is used in semiconductor assembly process. This system is a reciprocating one around the pivot point that consists of VCM(voice coil motor) as a actuator and transducer horn as a bonding tool. For the modeling elements, the system is divided into electrical circuit, magnetic circuit and mechanical system. Each system is modeled by using the bond graph method and united into the full system. Two major aims are considered in the design of the controller. The first one is that the horn must track the given reference trajectory. The second one is that the controller must be realizable by using the DSP board. Computer simulation and experimental results show that the designed sliding mode controller provides better performance than the PID controller.

  • PDF

Dynamic Characteristic Improvement of the Plate Spring in a 2-axis Small Sized Actuator (2축 소형 구동기 판 스프링의 동특성 개선)

  • Park, Soon-Ok;Yoo, Jeong-Hoon;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.14-18
    • /
    • 2009
  • This paper proposed an optimal plate spring design for the optical image stabilizer in mobile phones. The voice-coil motor (VCM) with plate spring is the smallest, lowest-cost solution for auto focus on the market today and it is also the simplest to implement. The VCM is selected in this paper for auto focusing. However, the design process is complex due to the many design variables coupled to each other and some constraints of each directional motion caused by the characteristics of plate spring. Because of the complex formulation of the design objective, a plate spring design is proposed through the design of experiments to find the optimal design satisfying design constraints.

  • PDF

Frequency-shaped Sliding Mode Control of Isolation Table Equipped with Precision devices (정밀기기가 탑재된 방진대의 주파수성형 슬라이딩모드 제어)

  • 김효준;박영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.124-131
    • /
    • 2002
  • This paper presents the design of an active vibration suppression controller for an air-spring type vibration isolation table. Firstly, isolation system model is constructed considering the isolation table, attached equipment and voice-coil actuator. An active control system is designed based on frequency-shaped sliding mode control theory rewarding high frequency uncertainties with respect to attached equipments on the isolation table. Finally. the performance of the active isolation system is evaluated by simulation under some disturbance conditions which are transmitted from base structure of the isolation system.