• Title/Summary/Keyword: voice activity detection (VAD)

Search Result 60, Processing Time 0.023 seconds

Robust Feature Extraction for Voice Activity Detection in Nonstationary Noisy Environments (음성구간검출을 위한 비정상성 잡음에 강인한 특징 추출)

  • Hong, Jungpyo;Park, Sangjun;Jeong, Sangbae;Hahn, Minsoo
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2013
  • This paper proposes robust feature extraction for accurate voice activity detection (VAD). VAD is one of the principal modules for speech signal processing such as speech codec, speech enhancement, and speech recognition. Noisy environments contain nonstationary noises causing the accuracy of the VAD to drastically decline because the fluctuation of features in the noise intervals results in increased false alarm rates. In this paper, in order to improve the VAD performance, harmonic-weighted energy is proposed. This feature extraction method focuses on voiced speech intervals and weighted harmonic-to-noise ratios to determine the amount of the harmonicity to frame energy. For performance evaluation, the receiver operating characteristic curves and equal error rate are measured.

Statistical Model-Based Voice Activity Detection Based on Second-Order Conditional MAP with Soft Decision

  • Chang, Joon-Hyuk
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.184-189
    • /
    • 2012
  • In this paper, we propose a novel approach to statistical model-based voice activity detection (VAD) that incorporates a second-order conditional maximum a posteriori (CMAP) criterion. As a technical improvement for the first-order CMAP criterion in [1], we consider both the current observation and the voice activity decision in the previous two frames to take full consideration of the interframe correlation of voice activity. This is clearly different from the previous approach [1] in that we employ the voice activity decisions in the second-order (previous two frames) CMAP, which has quadruple thresholds with an additional degree of freedom, rather than the first-order (previous single frame). Also, a soft-decision scheme is incorporated, resulting in time-varying thresholds for further performance improvement. Experimental results show that the proposed algorithm outperforms the conventional CMAP-based VAD technique under various experimental conditions.

Voice Activity Detection Algorithm Based on the Power Spectral Deviation of Teager Energy in Noisy Environment (잡음환경에서 Teager 에너지의 전력 스펙트럼 편차에 기반한 음성 검출 알고리즘)

  • Park, Yun-Sik;An, Hong-Sub;Lee, Sang-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.7
    • /
    • pp.396-401
    • /
    • 2011
  • In this paper, we propose a novel voice activity detection (VAD) algorithm to effectively distinguish speech from nonspeech in various noisy environments. The presented VAD utilizes the power spectral deviation (PSD) based on Teager energy (TE) instead of the conventional PSD scheme to improve the performance of decision for speech segments. In addition, the speech absence probability (SAP) is derived in each frequency subband to modify the PSD for further VAD. Performances of the proposed VAD algorithm are evaluated by objective test under various environments and better results compared with the conventional methods are obtained.

Voice Activity Detection Using Global Speech Absence Probability Based on Teager Energy in Noisy Environments (잡음환경에서 Teager Energy 기반의 전역 음성부재확률을 이용하는 음성검출)

  • Park, Yun-Sik;Lee, Sang-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.97-103
    • /
    • 2012
  • In this paper, we propose a novel voice activity detection (VAD) algorithm to effectively distinguish speech from nonspeech in various noisy environments. Global speech absence probability (GSAP) derived from likelihood ratio (LR) based on the statistical model is widely used as the feature parameter for VAD. However, the feature parameter based on conventional GSAP is not sufficient to distinguish speech from noise at low SNRs (signal-to-noise ratios). The presented VAD algorithm utilizes GSAP based on Teager energy (TE) as the feature parameter to provide the improved performance of decision for speech segments in noisy environment. Performances of the proposed VAD algorithm are evaluated by objective test under various environments and better results compared with the conventional methods are obtained.

Voice Activity Detection based on DBN using the Likelihood Ratio (우도비를 이용한 DBN 기반의 음성 검출기)

  • Kim, S.K.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.3
    • /
    • pp.145-150
    • /
    • 2014
  • In this paper, we propose a novel scheme to improve the performance of a voice activity detection(VAD) which is based on the deep belief networks(DBN) with the likelihood ratio(LR). The proposed algorithm applies the DBN learning method which is trained in order to minimize the probability of detection error instead of the conventional decision rule using geometric mean. Experimental results show that the proposed algorithm yields better results compared to the conventional VAD algorithm in various noise environments.

  • PDF

Voice Activity Detection employing the Generalized Normal-Laplace Distribution (일반화된 정규-라플라스 분포를 이용한 음성검출기)

  • Kim, Sang-Kyun;Kwon, Jang-Woo;Lee, Sangmin
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.294-299
    • /
    • 2014
  • In this paper, we propose a novel algorithm to improve the performance of a voice activity detection(VAD) which is based on the generalized normal-Laplace(GNL) distribution. In our algorithm, the probability density function(PDF) of the noisy speech signal is represented by the GNL distribution and the variance of the speech and noise of GNL distribution are estimated using higher order moments. Experimental results show that the proposed algorithm yields better results compared to the conventional VAD algorithms.

Voice Activity Detection Algorithm Using Speech Periodicity and QSNR in Noisy Environment (음성의 주기성과 QSNR을 이용한 잡음환경에서의 음성검출 알고리즘)

  • Jeong, Ju-Hyun;Song, Hwa-Jeon;Kim, Hyung-Soon
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.59-62
    • /
    • 2005
  • Voice activity detection (VAD) is important in many areas of speech processing technology. Speech/nonspeech discrimination in noisy environments is a difficult task because the feature parameters used for the VAD are sensitive to the surrounding environments. Thus the VAD performance is severely degraded at low signal-to-noise ratios (SNRs). In this paper, a new VAD algorithm is proposed based on the degree of voicing and Quantile SNR (QSNR). These two feature parameters are more robust than other features such as energy and spectral entropy in noisy environments. The effectiveness of proposed algorithm is evaluated under the diverse noisy environments in the Aurora2 DB. According to out experiment, the proposed VAD outperforms the ETSI Advanced Frontend VAD.

  • PDF

A Weighted Feature Voting Approach for Robust and Real-Time Voice Activity Detection

  • Moattar, Mohammad Hossein;Homayounpour, Mohammad Mehdi
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.99-109
    • /
    • 2011
  • This paper concerns a robust real-time voice activity detection (VAD) approach which is easy to understand and implement. The proposed approach employs several short-term speech/nonspeech discriminating features in a voting paradigm to achieve a reliable performance in different environments. This paper mainly focuses on the performance improvement of a recently proposed approach which uses spectral peak valley difference (SPVD) as a feature for silence detection. The main issue of this paper is to apply a set of features with SPVD to improve the VAD robustness. The proposed approach uses a weighted voting scheme in order to take the discriminative power of the employed feature set into account. The experiments show that the proposed approach is more robust than the baseline approach from different points of view, including channel distortion and threshold selection. The proposed approach is also compared with some other VAD techniques for better confirmation of its achievements. Using the proposed weighted voting approach, the average VAD performance is increased to 89.29% for 5 different noise types and 8 SNR levels. The resulting performance is 13.79% higher than the approach based only on SPVD and even 2.25% higher than the not-weighted voting scheme.

Statistical Model-Based Voice Activity Detection Using Spatial Cues for Dual-Channel Noisy Speech Recognition (이중채널 잡음음성인식을 위한 공간정보를 이용한 통계모델 기반 음성구간 검출)

  • Shin, Min-Hwa;Park, Ji-Hun;Kim, Hong-Kook;Lee, Yeon-Woo;Lee, Seong-Ro
    • Phonetics and Speech Sciences
    • /
    • v.2 no.3
    • /
    • pp.141-148
    • /
    • 2010
  • In this paper, voice activity detection (VAD) for dual-channel noisy speech recognition is proposed in which spatial cues are employed. In the proposed method, a probability model for speech presence/absence is constructed using spatial cues obtained from dual-channel input signal, and a speech activity interval is detected through this probability model. In particular, spatial cues are composed of interaural time differences and interaural level differences of dual-channel speech signals, and the probability model for speech presence/absence is based on a Gaussian kernel density. In order to evaluate the performance of the proposed VAD method, speech recognition is performed for speech segments that only include speech intervals detected by the proposed VAD method. The performance of the proposed method is compared with those of several methods such as an SNR-based method, a direction of arrival (DOA) based method, and a phase vector based method. It is shown from the speech recognition experiments that the proposed method outperforms conventional methods by providing relative word error rates reductions of 11.68%, 41.92%, and 10.15% compared with SNR-based, DOA-based, and phase vector based method, respectively.

  • PDF

Voice Activity Detection Algorithm base on Radial Basis Function Networks with Dual Threshold (Radial Basis Function Networks를 이용한 이중 임계값 방식의 음성구간 검출기)

  • Kim Hong lk;Park Sung Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1660-1668
    • /
    • 2004
  • This paper proposes a Voice Activity Detection (VAD) algorithm based on Radial Basis Function (RBF) network using dual threshold. The k-means clustering and Least Mean Square (LMS) algorithm are used to upade the RBF network to the underlying speech condition. The inputs for RBF are the three parameters in a Code Exited Linear Prediction (CELP) coder, which works stably under various background noise levels. Dual hangover threshold applies in BRF-VAD for reducing error, because threshold value has trade off effect in VAD decision. The experimental result show that the proposed VAD algorithm achieves better performance than G.729 Annex B at any noise level.