• Title/Summary/Keyword: vocal region detection

Search Result 5, Processing Time 0.024 seconds

A Karaoke system based on the vocal characteristics (음성 특성을 고려한 가라오케 시스템)

  • Kim, Yu-Seung;Kim, Rin-Chul
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.380-387
    • /
    • 2008
  • This paper presents a karaoke system employing a vocal region detection algorithm based on the vocal characteristics. In the proposed system, an input song is classified into vocal and instrumental regions using the vocal region detection algorithm. Then, a vocal removal method is applied only to the vocal region. To detect vocal region, a classification algorithm is designed based on the vocal characteristics in the TICFT (twice iterated composite Fourier transform) domain. For vocal removal, vocal components are extracted from a band pass filtered vocal region and they are subtracted from the original song, yielding a vocal removed song. The performance of the proposed method is measured on four different songs.

A Study on the Pitch Detection of Speech Harmonics by the Peak-Fitting (음성 하모닉스 스펙트럼의 피크-피팅을 이용한 피치검출에 관한 연구)

  • Kim, Jong-Kuk;Jo, Wang-Rae;Bae, Myung-Jin
    • Speech Sciences
    • /
    • v.10 no.2
    • /
    • pp.85-95
    • /
    • 2003
  • In speech signal processing, it is very important to detect the pitch exactly in speech recognition, synthesis and analysis. If we exactly pitch detect in speech signal, in the analysis, we can use the pitch to obtain properly the vocal tract parameter. It can be used to easily change or to maintain the naturalness and intelligibility of quality in speech synthesis and to eliminate the personality for speaker-independence in speech recognition. In this paper, we proposed a new pitch detection algorithm. First, positive center clipping is process by using the incline of speech in order to emphasize pitch period with a glottal component of removed vocal tract characteristic in time domain. And rough formant envelope is computed through peak-fitting spectrum of original speech signal infrequence domain. Using the roughed formant envelope, obtain the smoothed formant envelope through calculate the linear interpolation. As well get the flattened harmonics waveform with the algebra difference between spectrum of original speech signal and smoothed formant envelope. Inverse fast fourier transform (IFFT) compute this flattened harmonics. After all, we obtain Residual signal which is removed vocal tract element. The performance was compared with LPC and Cepstrum, ACF. Owing to this algorithm, we have obtained the pitch information improved the accuracy of pitch detection and gross error rate is reduced in voice speech region and in transition region of changing the phoneme.

  • PDF

Flattening Techniques for Pitch Detection (피치 검출을 위한 스펙트럼 평탄화 기법)

  • 김종국;조왕래;배명진
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.381-384
    • /
    • 2002
  • In speech signal processing, it Is very important to detect the pitch exactly in speech recognition, synthesis and analysis. but, it is very difficult to pitch detection from speech signal because of formant and transition amplitude affect. therefore, in this paper, we proposed a pitch detection using the spectrum flattening techniques. Spectrum flattening is to eliminate the formant and transition amplitude affect. In time domain, positive center clipping is process in order to emphasize pitch period with a glottal component of removed vocal tract characteristic. And rough formant envelope is computed through peak-fitting spectrum of original speech signal in frequency domain. As a results, well get the flattened harmonics waveform with the algebra difference between spectrum of original speech signal and smoothed formant envelope. After all, we obtain residual signal which is removed vocal tract element The performance was compared with LPC and Cepstrum, ACF 0wing to this algorithm, we have obtained the pitch information improved the accuracy of pitch detection and gross error rate is reduced in voice speech region and in transition region of changing the phoneme.

  • PDF

Region-of-Interest Detection using the Energy from Vocal Fold Image (성대 영상에서 에너지를 이용한 관심 영역 추출)

  • Kim, Eom-Jun;Sung, Mee-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.8
    • /
    • pp.804-814
    • /
    • 2000
  • In this paper, we propose an effective method to detect the regions of interests in the Videostrobokymography System. Videostrobokymography system is a medical image processing system for extracting automatically the diagnosis parameters from the irregular vibratory movements of the vocal fold. We detect the regions of interests through three steps. In the first step, we remove the noise in the input image and we find the minimum energy value in each frame. In the second step, we computed the edge by everage value for the one line. In the third step, the regions of interests can be extracted by using the Merge Algorithm which uses the variance of luminance as the feature points. We experimented this method for the vocal fold images of nineteen patients. In consequence, the regions of interests are detected in most vocal fold images. The method proposed in this study is efficient enough to extract the region of interests in the vocal fold images with the frame rate of 40 frames/second and the resolution of 200${\times}$280 pixels.

  • PDF

Usefullness of the Vibration Pick-Up in Detection of Pitch for Synchronization of Laryngeal Stroboscopy (후두 스트로보스코프 검사의 신호 동기화를 위한 진동 검출기의 유용성)

  • Lee, Jin-Choon;Lee, Byung-Joo;Wang, Soo-Geun;Roh, Jung-Hoon;Kwon, Sun-Bok;Jo, Cheol-Woo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.18 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • Objective and Background: Laryngeal stroboscope is an useful equipment in evaluation of vocal cord vibration and in early detection of mucosal lesion including invasive cancer of the vocal cord. Recently Lee et al. (2006) developed portable stroboscope using voice as synchronization signal. It has been frequently impaired ability to synchronize the flashes even in normal female. Authors tried to investigate various methods including vibration pick-up, microphone, laryngeal microphone, and contact microphone for development of simple and accurate method like electroglottograph signal. The purpose of this study was to estimate wheher the vibration pick-up is available and is consistent with the signal of EGG. Subjects and Methods: Authors compared the signals between EGG and noncontact method such as voice, contact methods including vibration pick-up, laryngeal microphone, and contact microphone in normal twenty adults (male 10 and female 10). The number of peak in one cycle was compared with the number of the peak in EGG, and the percent of phase difference in the peak was compared with EGG Also, authors tried to investigate which site of vibration pick-up was most effective for synchronization of stobo flashes. Three site including anterior neck below the cricoid cartilage, thyroid ala, and suprahyoid region were analysed. Results: Among various methods for synchronization of strobo flashes, vibration pick-up was most effective method in peak detection. And anterior neck below cricoid cartilage was the most available site of the vibration pick-up. Conclusion: Authors suggest that vibration pick-up is most available and effective method for synchronization of strobo flashes.

  • PDF