• Title/Summary/Keyword: vital staining

Search Result 33, Processing Time 0.02 seconds

Recent Advancement in the Differentiation of Tissues and Organs and Regulation of Gene Expression (조직.기관의 분화와 유전자 발현의 조절, 최근의 진보)

  • Harn, Chang-Yawl
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.1
    • /
    • pp.1-35
    • /
    • 1997
  • Fertilized egg, by successive cell divisions, differentiates into different tissues and organs with various structures and functions. Different cells and tissues contain different proteins, products of selective gene expression. Not all the genes in any genomes are equally active, temporal and spatial gene expression being the general rule. Present paper attempts to review the tanscriptional mechanisms or the initiations of transcription from several angles. In some of the organisms the genes in the process of transcription or the genes in the inactive state can be seen under the light microscope. Some bands of Drosophila polytene chromosomes may exhibit a swollen or puff appearance under certain conditions. A puff, unfolded or decondensed form of chromomere, represents sets of intense transcriptional activity or RNA synthesis. The heterochromatic X chromosome whose genes remain inactive in the female mammals can be visualized as a dark staining structure called Barr body, Configuration of chromatin differs between transcribed and nontranscribed chromatin. Modification to the chromatin facilitates RNA synthesis. The movement of large polymerase molecule along the DNA would probably be facilitated if some modifications of the chromatin configuration is effected. Methylation of cytosines in CG sequences is associated with inactive genes. Methylation can play a role in determination of mammalian cells during embryogenesis. Demethylation is necessary for the gene to be expressed during development A histone modification that is also known to be correlated with transcriptional capacity of chromatin is acetylation of the lysine residues of the core histones. Chromatin containing a high level of histone acetylation is very sensitive to DNase 1. For the transcription to occur TBP must first bind to the TATA box. Another TF, TF IIB, then binds to the promoter-TBP complex, facilitating the access of RNA polymerase to the transcription initiation site. As recently as eight years ago researchers assumed that histones were irrelevant to the regulation of gene expression. Histones combine with the DNA to form nucleosome of the chromatin. Histones are vital participant in gene regulation. Histone and basal factors compete for access to TATA box. When DNA is exposed to basal factors before histones are introduced, the basal factors assemble on TATA boxes preventing the access of histones, allowing transcription to occur, for transcription to begin, activator protein at the upstream activation sequence or enhancer must interact with the tail of histone H4 at TATA box and cause the histone role particle to dissociate from the TATA box leading to partial breakup of the histone core particle and allowing the basal factors to bind to the TATA box. New concept of genomic flux in contrast to the old concept of static genome has been developed based on the powerful new molecular techniques. Genomic changes such as repetitive DNAs and transposable elements, it is assumed but not yet proved, may affect some of the developmental patterns that characterize particular cells, tissues, organs, and organisms. In the last decade or so remarkable achievement have been made in the researches of the structures and functions of TFs and the specific target sequences located in promoters or enhancers where these TFs bind. TFs have independent domains that bind DNA and that activate transcription. DNA binding domain of TFs serves to bring the protein into the right location. There are many types of DNA binding domains. Common types of motifs can be found that are responsible for binding to DNA. The motifs are usually quite short and comprise only a small part of the protein structure. Steroid receptors have domains for hormone binding, DNA binding, and activating transcription. The zinc finger motif comprises a DNA binding domain. Leucine zipper consist of a stretch of amino acids with a leucine residue in every seventh position Two proteins form a dimer because they interact by means of leucine zippers on similar α-helical domain. This positions their DNA binding basic domains for interaction with the two halves of a DNA sequence with dyad symmetry of TGACTCA, ACTGAGT.

  • PDF

Assessment of Chromosomal Analyses of 1,180 Cases Suspected of Chromosomal Aberrations (염색체이상을 의심한 1,180례의 염색체 분석 결과 검토)

  • Jeong, Hyeon Kyoung;Ahn, Eun Young;Rim, Sung Soo;Kim, Eun Young;Kim, Kyoung Sim;Kim, Yong Wook;Kim, Ki Bok
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.3
    • /
    • pp.311-319
    • /
    • 2002
  • Purpose : We have performed this study to obtain reference data for the distribution of chromosomal aberrations in Korea. Methods : We analyzed 1,180 chromosomal study cases from Kwang ju Christian Hospital during the past 25 years. 756 cases suspected of characteristic chromosomal aberration syndromes and 424 cases with hermaphroditism, mild sexual abnormalities, multiple anomalies, or mental & growth retardation were included. Results : The male to female ratio of autosomal aberration syndromes was 1.2 : 1. 78.6% of autosomal aberrations were diagnosed under 1 year of age, whereas 89.8% of sex chromosomal aberrations were diagnosed over 12 years of age. Among 1,180 cases, 612 ones had chromosomal aberrations(51.9%) : 590 of 756 cases suspected of chromosomal aberration syndromes had aberrations( 78.0%), whereas 22 of 424 showing the above other features had aberrations(5.2%). Autosomal aberrations appeared in 514 cases(83.8%) and sex chromosomal aberrations appeared in 98 cases(16.2%). The most frequently observed abberation in autosomal aberrations was Down syndrome, followed by E, D, B, A and C group aberrations. The most common abberation in sex chromosomal aberrations was Turner syndrome, followed by Klinefelter syndrome and Fragile X syndrome. Conclusion : It is of vital importance that patients suspected of chromosomal aberrations undergo chromosomal analysis. Further advanced chromosomal staining and molecular genetic methods will raise the detection rate of chromosomal aberrations.

Comparison of TheraCal LC, Mineral trioxide aggregate, and Formocresolas pulpotomy agents in rat molar (백서에서 치수절단술에 사용하는 TheraCal LC, MTA 그리고 Formocresol의 비교)

  • Lee, Bin-Na;Song, Young-Sang;Lee, Go-Woon;Kim, Young-Hoon;Chang, Hoon-Sang;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Korean Journal of Dental Materials
    • /
    • v.44 no.2
    • /
    • pp.187-195
    • /
    • 2017
  • TheraCal LC, a new light-cured, resin-modified calcium silicate-filled base/liner material, has been introduced as a pulpotomy agent. The aim of this study was to evaluate the capacity of hard tissue formation and pulpal response after pulpotomy with TheraCal LC. Twenty-two 9-week-old male rats were anesthetized, cavities were prepared in maxillary first molars and pulps were capped with formocresol (FC), mineral trioxide aggregate (MTA), and TheraCal LC. Specimens obtained from rats were scanned using a high-resolution micro CT system. The specimens were prepared and evaluated histologically, and immunofluorescence assay was performed to assess the dentin matrix protein-1 (DMP-1) expression. On micro CT analysis, the MTA and TheraCal LC groups showed thicker hard tissue formation than the FC group. On hematoxylin and eosin (H&E) staining, MTA and TheraCal LC groups showed dentine bridge formation with vital pulp beneath the materials. On immunofluorescence analysis, DMP-1 was highly expressed in the TheraCal LC group compared to the FC group. TheraCal LC showed similar capacity to form hard tissue as MTA when it was used as a pulpotomy agent. Because of its good manipulation and faster setting time compared to MTA, TheraCal LC could be considered as a good alternative to MTA.