• Title/Summary/Keyword: visualization test

Search Result 462, Processing Time 0.033 seconds

Optimization of disposable paper-based test strips for hypochlorous acid detection

  • Rita E. Ampiaw;Muhammad Yaqub;Changyeon Woo;Wontae Lee
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.181-189
    • /
    • 2023
  • The Covid-19 pandemic has increased demand for chlorine-based sanitizing solutions, most of which contain hypochlorous acid (HOCl) as an active agent. Free chlorine (HOCl) in these sanitizers is crucial for their efficacy. Disposable test strips are affordable and convenient tools for determining various qualitative and quantitative parameters. In this study, disposable opto-chemical test strips were developed by physically immobilizing 3,3',5,5'-tetramethylbenzidine (TMB) and o-dianisidine (o-D) reagents on chromatography and filter paper-based test strips for the visualization and detection of free chlorine in the form of HOCl. The reagents undergo a rapid color change upon reaction with chlorine through a redox reaction. The paper-based test strips showed rapid color change within a minute and a low sample volume requirement (1 ml). This portable, disposable paper-based test strip is a simple and cost-effective way to rapidly detect the presence of HOCl sanitizers for home and field applications. Both TMB and o-D successfully detected chlorine. Chromatography paper proved to be the more efficient option among the two papers used as substrates for the reagents (TMB and o-D). It exhibited high retention capacity and high performance in terms of color transformation when reacting with HOCl, even after two months of storage.

An Experimental Study on Swirling Flow in a Cylindrical Annuli by Using PIV Technique (원형 이중관 내에서 PIV 기법을 이용한 선회유동에 관한 실험적 연구)

  • 장태현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.666-674
    • /
    • 2003
  • An experimental investigation was performed to study the characteristics of turbulent swirling flow in an axisymmetric annuli. The swirl angle measurements were performed by flow visualization technique using smoke and dye liquid along the test tube. Using the Particle Image Velocimetry method, this study found the time-mean velocity distribution and turbulent intensity with swirl for Re = 20.000. 30.000, 50.000. and 70.000 along longitudinal sections and the results appear to be physically reasonable.

An Experimental Study on the Wake with Swirling Flow in a Horizontal Circular Tube (수평원통관에서 선회유동의 후류에 관한 실험적 연구)

  • Kang Chang-Soo;Chang Tae-Hyun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.5-9
    • /
    • 2004
  • An experimental study is performed turbulent swirling flow behind a crcular cylinder using 2-D PIV technique. The Reynolds number investigated is 15,000. The mean velocity vector, time mean axial velocity, turbulence intensity, kinetic energy and Reynolds shear stress behind the cylinder are measured before and behind the cylinder along the test tube.

  • PDF

BIM based Construction Progress Monitoring System Integrated with IOT (사물인터넷을 활용한 BIM기반 건설 진도율 모니터링 시스템)

  • Son, Sang-Hyuk;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.130-131
    • /
    • 2015
  • Accurate construction progress measurement is an important issue for successful project delivery. This paper presents a method that keeps track of the progress measurement involved in construction operations and facilities visualization of the data using BIM and IOT. To verify the method, a residential house project was used for the case study. Test case verifies the usability and validity of the method implemented in the system.

  • PDF

Development of a VR Juggler-based Virtual Reality Interface for Scientific Visualization Application (과학적 가시화 어플리케이션을 위한 VR Juggler 기반 가상현실 인터페이스 개발)

  • Gu, Gibeom;Hwang, Gyuhyun;Hur, YoungJu
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.10
    • /
    • pp.488-496
    • /
    • 2016
  • In this paper, we introduce a virtual reality interface for scientific visualization applications. Our VR interface is based on an open-source framework called VR Juggler. Although VR Juggler has its own advantages, it lacks some of the important functionalities needed for practical applications - event handling, synchronization and data sharing among cluster nodes, to name a few. We explain how these issues are resolved while developing the VR interface. Also, a new interface with a smart device, which replaces the virtual reality input device, is introduced. Finally, system usability test results are provided to prove the effectiveness of the proposed interfaces.

Experimental and Numerical Analysis of DME Spray Characteristics in Common-rail Fuel System (커먼레일 연료시스템에서의 DME 분무 특성에 대한 실험과 해석적 연구)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Lee, Sang-In;Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1151-1159
    • /
    • 2012
  • Spray visualization and computer simulation of a DME injector have been conducted to investigate the enlarged injection hole diameter effect. To increase the reliability of the computational result, simulation results have been compared with the visualization test results, and the behaviors of a DME spray under various high-pressure and -temperature conditions have been computed. This study shows a discrepancy of 3.57% between the experimental and the computational results of penetration length for an injection pressure of 35 MPa and ambient pressure of 5 MPa. When simulating the engine conditions, the maximum penetration length of a fully developed DME spray is 42 mm when the temperature to pressure ratio is 300 K/MPa. The DME spray behavior is dominantly affected by the ambient pressure under the condition that the ratio is less than 300 K/MPa, and by the ambient temperature under the condition that the ratio is more than 300 K/MPa.

Design and operation of the transparent integral effect test facility, URI-LO for nuclear innovation platform

  • Kim, Kyung Mo;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.776-792
    • /
    • 2021
  • Conventional integral effect test facilities were constructed to enable the precise observation of thermal-hydraulic phenomena and reactor behaviors under postulated accident conditions to prove reactor safety. Although these facilities improved the understanding of thermal-hydraulic phenomena and reactor safety, applications of new technologies and their performance tests have been limited owing to the cost and large scale of the facilities. Various nuclear technologies converging 4th industrial revolution technologies such as artificial intelligence, drone, and 3D printing, are being developed to improve plant management strategies. Additionally, new conceptual passive safety systems are being developed to enhance reactor safety. A new integral effect test facility having a noticeable scaling ratio, i.e., the (UNIST reactor innovation loop (URI-LO), is designed and constructed to improve the technical quality of these technologies by performance and feasibility tests. In particular, the URI-LO, which is constructed using a transparent material, enables better visualization and provides physical insights on multidimensional phenomena inside the reactor system. The facility design based on three-level approach is qualitatively validated with preliminary analyses, and its functionality as a test facility is confirmed through a series of experiments. The design feature, design validation, functionality test, and future utilization of the URI-LO are introduced.

Development of a System for Visualization of the Plant 3D Design Data Based on ISO 15926 (ISO 15926 기반 플랜트 3D 설계 데이터 가시화를 위한 시스템 개발)

  • Jeon, Youngjun;Kim, Byung Chul;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.145-158
    • /
    • 2015
  • ISO 15926 is an international standard for the sharing and integration of plant lifecycle information. Plant design data consist of logical configuration, equipment specifications, 2D piping and instrument diagrams (P&IDs), and 3D plant models (shape data). Although 3D computer-aided design (CAD) data is very important data across the plant lifecycle, few studies on the exchange of 3D CAD data using ISO 15926 have been conducted so far. For this, we analyze information requirements regarding plant 3D design in the process industry. Based on the analysis, ISO 15926 templates are defined for the representation of constructive solid geometry (CSG) - based 3D design data. Since system environments for 3D CAD modeling and Semantic Web technologies are different from each other, we present system architecture for processing and visualizing plant 3D design data in the Web Ontology Language (OWL) format. Through the visualization test of ISO 15926-based 3D design data for equipment with a prototype system, feasibility of the proposed method is verified.

Synthesis of FDR-SPC Resin and PIV Measurement for Frictional Drag-reduction (마찰저항 저감을 위한 고분자 수지 합성 및 PIV 유동장 계측)

  • Chung, Sungwoo;Kim, Eunyoung;Chun, Ho Hwan;Park, Hyun;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.49-53
    • /
    • 2014
  • In this study, a novel FDR-SPC is first synthesized in this study. The drag reducing functional radical such as PEGMA (Poly(ethylene) glycol methacrylate) has been utilized to participate in the synthesis process of the SPC. The types of the baseline SPC monomers, the molecular weight and the mole fraction of PEGMA were varied in the synthesis process. The resulting SPCs were coated to the substrate plates for the subsequent hydrodynamic test for skin friction measurement. In a low-Reynolds number flow measurement using PIV (Particle Image Velocimeter), a significant reduction in Reynolds stress was observed in a range of specimen, with the maximum drag reduction being 15.9% relative to the smooth surface.

Three-Dimensional Visualization of Medical Image using Image Segmentation Algorithm based on Deep Learning (딥 러닝 기반의 영상분할 알고리즘을 이용한 의료영상 3차원 시각화에 관한 연구)

  • Lim, SangHeon;Kim, YoungJae;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.468-475
    • /
    • 2020
  • In this paper, we proposed a three-dimensional visualization system for medical images in augmented reality based on deep learning. In the proposed system, the artificial neural network model performed fully automatic segmentation of the region of lung and pulmonary nodule from chest CT images. After applying the three-dimensional volume rendering method to the segmented images, it was visualized in augmented reality devices. As a result of the experiment, when nodules were present in the region of lung, it could be easily distinguished with the naked eye. Also, the location and shape of the lesions were intuitively confirmed. The evaluation was accomplished by comparing automated segmentation results of the test dataset to the manual segmented image. Through the evaluation of the segmentation model, we obtained the region of lung DSC (Dice Similarity Coefficient) of 98.77%, precision of 98.45%, recall of 99.10%. And the region of pulmonary nodule DSC of 91.88%, precision of 93.05%, recall of 90.94%. If this proposed system will be applied in medical fields such as medical practice and medical education, it is expected that it can contribute to custom organ modeling, lesion analysis, and surgical education and training of patients.