• Title/Summary/Keyword: visualization test

Search Result 463, Processing Time 0.027 seconds

Review of the Improved Moving Frame Acoustic Holography and Its Application to the Visualization of Moving Noise Sources (개선된 이동 프레임 음향 홀로그래피 방법과 이동 음원의 방사 소음의 가시화에 대한 응용)

  • 박순홍;김양한
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.669-678
    • /
    • 2000
  • This paper reviews the improved moving frame acoustic holography (MFAH) method and its application. Moving frame acoustic holography was originally proposed to increase the aperture size and the spatial resolution of hologram by using a moving line array of microphones. The hologram of scanned plane can be obtained by assuming the sound field to be product of spatial and temporal information. Although conventional MFAH was only applied to sinusoidal signals, it allows us to visualize the noise generated by moving noise sources by employing a vertical line array of microphones affixed to the ground. However, the sound field generated by moving sources becomes different from that of stationary ones due to the movement of the sources. Firstly, this paper introduces the effect of moving noise sources on the obtained hologram by MFAH and the applicability of MFAH to the visualization of moving sources. Secondly, this paper also reviews improved MFAH that can visualize a coherent narrow band noise and a pass-by noise. The practical applicability of the improved MFAH was demonstrated by visualizing tire noise during a pass-by test.

  • PDF

Development of Marine Casualty Forecasting System (III): Implementation of Three-Dimensional Visualization System (해양사고 예보 시스템 개발 (III): 3차원 통계 가시화 시스템 구축)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • The paper describes implementation of three-dimensional visualization system that is to provide comprehensive meaning of the statistical prediction results on the marine casualties. Graphical User Interface (GUI) and Web based Virtual Reality (VR) technology are mainly introduced in the system development. To provide daily forecasting, time based casualty prediction model and risk level index are developed in this work. As operating test results of the system, complicated statistical meaning can be shown in the three-dimensional virtual space using simple color. In addition, daily risk levels can be shown on the bar-graph.

Visualization of Air Absorption Induced by Free Surface Vortex in the Pump Sump Using Multi-phase Flow Simulation (펌프 섬프장내 자유표면 보텍스에 의한 공기흡입 현상의 가시화)

  • Park, Young-Kyu;Li, Kui. Ming.;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.59-64
    • /
    • 2011
  • In this study the change of free surface vortex is expressed through the time volume fraction using multiphase unsteady condition in sump, because in previous studies of the pump sump did not represent the behavior of the free surface vortex exactly due to the reason it was calculated using single phase and steady condition. The reliability of the computational analysis is verified through comparing experimental results with that of present numerical analysis. Homogeneous free surface model is used to apply interactions of air and water. The results show that the free surface vortex can be identified on the isotropic surface at air volume fraction 1%~5%. The vortices make an air column from the free surface to the sump intake and are created and destroyed repeatedly. The behavior of free surface vortex at numerical analysis is quite similar to experimental test. The result of vortex motion according to time, works on a cycle.

Visualization and Computational Analysis for Flow around Rotating Blades (회전하는 블레이드 주위의 유동가시화 및 전산유동해석)

  • Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • The optimal design is needed for the blade geometry of the quad-rotor blades which is mainly used for Unmanned Aerial Vehicle. To do this, it is important to analyze the wakes under the blades. In the present study, the flow around the rotating blades was analyzed using PIV(Particle Image Velocimetry) and CFD(Computational Fluid Dynamics). The maximum axial velocity was measured at about 60% position toward the radial direction of the blade. The positions of vorticities in the test section obtained by PIV and CFD were turned out to be almost alike. The values in the difference of pressure coefficients at the upper and the lower blades were increased depending on the radial direction. Then, the values were decreased at the blade tip. The data of the flow analysis in the present study are expected to be served as the design of blades and ducts for the thrust improvement in the future.

A Study on the Efficient Occlusion Culling Using Z-Buffer and Simplified Model (Z-Buffer와 간략화된 모델을 이용한 효율적인 가려지는 물체 제거 기법(Occlusion Culling)에 관한 연구)

  • 정성준;이규열;최항순;성우제;조두연
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.2
    • /
    • pp.65-74
    • /
    • 2003
  • For virtual reality, virtual manufacturing system, or simulation based design, we need to visualize very large and complex 3D models which are comprising of very large number of polygons. To overcome the limited hardware performance and to attain smooth realtime visualization, there have been many researches about algorithms which reduce the number of polygons to be processed by graphics hardware. One of these algorithms, occlusion culling is a method of rejecting the objects which are not visible because they are occluded by other objects, and then passing only the visible objects to graphics hardware. Existing occlusion culling algorithms have some shortcomings such as the required long preprocessing time, the limitation of occluder shape, or the need for special hardware implementation. In this study, an efficient occlusion culling algorithm is proposed. The proposed algorithm reads and analyzes Z-buffer of graphics hardware using Microsoft DirectX, and then determines each object's visibility. This proposed algorithm can speed up visualization by reading Z-buffer using DirectX which can access hardware directly compared to OpenGL, by reading only the region to which each object is projected instead of reading the whole Z-Buffer, and the proposed algorithm can perform more exact visibility test by using simplified model instead of using bounding box. For evaluation, the proposed algorithm was applied to very large polygonal models. And smooth realtime visualization was attained.

Development of Marine Casualty Forecasting System (III): Three-Dimensional Visualization System (해양사고 예보 시스템 개발(III): 3차원 통계 가시화 시스템)

  • 임정빈;공길영;구자영;김창경
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.66-72
    • /
    • 2003
  • The paper describes on the implementation of three-dimensional visualization system that is to visualize meaning of the statistical prediction results of marine casualty with easy of understanding. Graphical User Interface(GUI) and Web based Virtual Reality (VR) technology are mainly introduced in the system development. In addition, the time based prediction models of the marine casualty and the risk level are developed to display daily situation. As operating test results of the system, it is known that complicated statistical results can be shown as simple colour in the three-dimensional virtual space.

  • PDF

Dynamic Characteristics of Thermal Stratification Build-up by Unsteady Natural Convection (비정상 자연대류에 의한 온도성층화의 동특성에 관한 연구)

  • Kang, B.S.;Lee, J.S.;Lee, T.S.;Ro, S.T.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.382-394
    • /
    • 1988
  • Dynamic characteristics of thermally-forced stratification process in a square enclosure with a linear temperature profile at the side walls have been investigated through flow visualization experiment and numerical analysis. The experiment was performed on air with the Rayleigh numbers of order $10^5$. A particle tracer method is used for the flow visualization and to obtain a sudden linear temperature profile at the side walls copper blocks which already have a linear temperature profile are come into contact with the thin copper plates of the test section. Immediately a meridional circulation is developed and heat transfer takes place from the wall to the interior region by circulation of fluid and finally a thermal stratification is achieved. In the numerical study, QUICK scheme for convective terms, SIMPLE algorithm for pressure correction, and the implicit method for the time marching are adopted for the integration of conservation equations. Comparison of flow visualization and numerical results shows that the developing flow patterns are very similar in dynamic nature even though there is a time lag due to the inevitable time delay in setting up a linear temperature profile. For high Rayleigh numbers, the oscillatory motion is likely to take place and stratified region is extended. However, initial temperature adjustment process is much slower than that for low Rayleigh numbers.

  • PDF

Development of AI oxygen temperature measurement technology using hyperspectral optical visualization technology (초분광 광학가시화 기술을 활용한 인공지능 산소온도 측정기술 개발)

  • Jeong Hun Lee;Bo Ra Kim;Seung Hun Lee;Joon Sik Kim;Min Yoon;Gyeong Rae Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.103-109
    • /
    • 2023
  • This research developed a measurement technique that can measure the oxygen temperature inside a high temperature furnace. Instead of measuring only changes in frequency components within a small range used in the existing variable laser absorption spectroscopy, laser spectroscopy technology was used to spread out wavelength of the light source passing through the gas Based on a total of 20,000 image data, research was conducted to predict the temperature of a high-temperature furnace using CNN with black and white images in the form of spectral bands by temperature of 25 to 800 degrees. The optimal model was found through Hyper parameter optimization, R2 score is 0.89, and the accuracy of the test data is 88.73%. Based on this research, it is expected that concentration measurement and air-fuel ratio control technology can be applied.

Research for improving quality of SI(System integration) development project (시스템 통합(SI) 구축 사업 품질 향상을 위한 연구)

  • Kim, Seok-Kwan;Ryu, Gab-Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.215-220
    • /
    • 2018
  • This paper limited the participation of large corporations in the mass information market by revising the Software Industry Promotion Act in order to increase business opportunity, equality of opportunity, and capacity building for small and medium sized IT companies. However, it is a fact that the medium and small SW companies have insufficient business capacity and expose various problems such as quality degradation of public information business, inadequate risk management, and deterioration of schedule management. In order to solve this problem, this paper derived the factors of quality deterioration in the system integration project and proposed to carry out the project by using some activities of VISUALIZATION, rigorous test management and Agile Methodology as a solution. Applying these measures to healthcare IT projects developed by midsize / small-sized IT companies has improved communications, improved quantitative progress management and improved project visibility. In addition, it contributed to minimizing defect resolution time, improving the requirement coverage ratio, and shortening unnecessary meeting time.

A literature review on clinical/ laboratory misfit evaluation on implant-prosthesis (임플란트와 상부보철물의 임상적/실험적 부적합 평가에 관한 문헌고찰)

  • Kim, Jong-Hoi;Cho, Woong-Rae;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of the Korean dental association
    • /
    • v.56 no.9
    • /
    • pp.462-478
    • /
    • 2018
  • The presence of implant-prosthesis misfits can cause various complications. It is very important to detect misfits to prevent such complications. There are various evaluation methods for misfit assessment including clinical methods and laboratory in vitro methods. The clinical misfit evaluation includes radiographic analysis, visual observation, probing, Sheffield test, evaluation with disclosing materials, and screw resistance test. The laboratory in vitro evaluation method includes indirect modelling evaluation and direct metrological visualization. Of the indirect modelling methods, photoelastic stress analysis, finite element analysis, strain gauge analysis, and microbial colonization analysis were reviewed. Of the direct metrological visualization, microscopic analysis, 3-D photogrammetric analysis, coordinate measuring analysis, and radiographic analysis were reviewed. In this review, the characteristics, advantages and disadvantages of each method were evaluated.

  • PDF