• Title/Summary/Keyword: visualization process

Search Result 879, Processing Time 0.026 seconds

Development of PC-based Radiation Therapy Planning System

  • Suh, Tae-Suk;P task group, R-T
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.121-122
    • /
    • 2002
  • The main principle of radiation therapy is to deliver optimum dose to tumor to increase tumor cure probability while minimizing dose to critical normal structure to reduce complications. RTP system is required for proper dose plan in radiation therapy treatment. The main goal of this research is to develop dose model for photon, electron, and brachytherapy, and to display dose distribution on patient images with optimum process. The main items developed in this research includes: (l) user requirements and quality control; analysis of user requirement in RTP, networking between RTP and relevant equipment, quality control using phantom for clinical application (2) dose model in RTP; photon, electron, brachytherapy, modifying dose model (3) image processing and 3D visualization; 2D image processing, auto contouring, image reconstruction, 3D visualization (4) object modeling and graphic user interface; development of total software structure, step-by-step planning procedure, window design and user-interface. Our final product show strong capability for routine and advance RTP planning.

  • PDF

An experimental study of convective smoke filling (유동에 의한 연층 확산에 관한 실험적 연구)

  • 김명배;한용식
    • Fire Science and Engineering
    • /
    • v.11 no.3
    • /
    • pp.3-14
    • /
    • 1997
  • An experimental investigation of smoke spread in a corridor is made using thermocouples and visualization technique with a laser beam sheet. A speed of smoke front under a ceiling is measured by thermocouple trees. Visualization of the ceiling jet formation and of smoke filling process is carried out to observe lowering of the smoke layer. From the results, a large-scale convective motion the corridor plays dominant roles for smoke spread from visualized photos together with temperature records. A circulating motion of fluid transports some smokes to some regions where its momentum is effective. It is therefore showed that the conventional concept of lowering smoke with two-layer zone model has some restrictions for the corridor because the lowering of smoke layer has been thought to be mass transport due to relatively small scale motion such as decrease of buoyancy, mass diffusion and momentum exchange.

  • PDF

Analyses of Fouling Mechanism using Visualization Techniques in a Lab-scale Plate-Type Heat Exchanging System (실험실용 판형 열교환 시스템에서 가시화를 이용한 파울링 기구 해석)

  • 성순경;서상호;노형운
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.349-354
    • /
    • 2004
  • Scale is formed when hard water is heated or cooled in heat transfer equipments such as heat exchangers, condensers, evaporators, cooling towers, boilers, and pipe walls. When the scale deposits in a heat exchanger surface, it is conventionally called fouling. The objective of the present study is to analyze the process of the fouling formation in a heat exchanger according to different types of water using visualization techniques. In order to experimentally investigate the formation of the fouling, this study built a lab-scaled heat exchanging system. Using the visualization techniques of Scanning Electron Microscopy (SEM) and X-Ray diffraction method, the three dimensional configurations of the fouling formation could be successfully obtained. Based on the experimental results, it was found that the configurations of the fouling formation were different when using tap water compared to river water.

Two-Phase Flow Patterns of $CO_{2}$ in a Heated Narrow Rectangular Channel (미세사각채널에서 $CO_{2}$의 이상유동 양식에 관한 연구)

  • Kim Yongchan;Yun Rin;Chung Jin Taek
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.66-72
    • /
    • 2004
  • The heat transfer and pressure drop characteristics of $CO_{2}$ are substantially different from those for CFC and HCFC refrigerants. In addition, geometric effects on two-phase flow patterns of $CO_{2}$ are also very significant in many respects. Therefore, two-phase flow patterns of $CO_{2}$ in a narrow rectangular channel or a small diameter tube whose gap size or hydraulic diameter is less than 2 mm are very important to understand heat transfer characteristics and to develop an appropriate heat transfer correlation. In the present study, the evaporation process of $CO_{2}$ in a narrow rectangular channel is visualized at various test conditions, and then the effects of operating conditions are analyzed.

  • PDF

Analysis and Visualization of Temperature Field for Wafer Batch in Furnace (반응로 내 웨이퍼 배치의 온도장 분석 및 가시화)

  • Kang, Seung-Hwan;Lee, Seung Ho;Kim, Byeong Hoon;Ko, Han Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.3
    • /
    • pp.24-28
    • /
    • 2015
  • The temperature of the wafer batch in the furnace was calculated and its visualized temperature field was analyzed. The main heat transfer mechanisms from the heater wall to the wafers were radiation and conduction, and the finite difference method was used to analyze the complex heat transfer including those two mechanisms. The visualized temperature field shows that the direction of the heat flux in the wafer batch varies during the heating process, and the heat in the wafer batch diffuses faster by conduction within the wafer than by radiation between the wafers, in the condition of the constant temperature at the heater wall and cap.

Visualization of Disruptive Bubble Behavior in Ultrasonic Fields (초음파장내 파괴적인 기포의 운동 가시화)

  • Kim, Tae-Hong;Park, Keun-Hwan;Kim, Ho-Young
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.17-19
    • /
    • 2011
  • The bubble oscillations play an important role in ultrasonic cleaning processes. In the ultrasonic cleaning of semiconductor wafers, the cleaning process often damages micro/nano scale patterns while removing contaminant particles. However, the understanding of how patterns in semiconductor wafers are damaged during ultrasonic cleaning is far from complete yet. Here, we report the observations of the motion of bubbles that induce solid wall damage under 26 kHz continuous ultrasonic waves. We classified the motions into the four types, i.e. volume motion, shape motion, splitting or jetting motion and chaotic motion. Our experimental results show that bubble oscillations get unstable and nonlinear as the ultrasonic amplitude increases, which may exert a large stress on a solid surface raising the possibility of damaging microstructures.

Visualization of CAE Analysis Results using JT (JT를 이용한 CAE 해석결과 가시화)

  • Lee, Ok-Lyeol;Kim, Jay-Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.625-630
    • /
    • 2008
  • In the manufacturing industries, viewing CAE analysis results is frequently required during the product development process for design verification. CAE data which include all related information of an analysis is, however, not efficiently shared among designers because CAE data size is in general large to deal with. In order to increase collaboration among designers this paper introduces the development of a CAE visualization system based on JT format exploiting for a large model visualization with a scene graph-based toolkit. Since CAE analysis results and JT format have different structure we developed a translator to convert the CAE result in binary format to the JT format. To show the effectiveness of JT format in showing the CAE result we also developed a prototype viewer offering basic functions provided by commercial systems. By using JT format we are able not only to reduce the size of analysis results, but to store a series of analysis results with several LOD in a data file.

  • PDF

A Study on the Scavenging Efficiency Evaluation for the RSSV Configuration of 2-Stroke Engine with Popet Valve Type Using Single-Cycle Method (Single-Cycle 기법을 이용한 포핏밸브형 2-행정기관의 RSSV 형상에 따른 소기효율 측정에 관한 연구)

  • 이진욱;강건용;정용일;이주헌;박정규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.69-79
    • /
    • 1997
  • This paper deals with the measurement and analysis on the scavenging performance of the oppet-valve type two-stroke engine with different shroud system. The scavenging flow characteristics is investigated by flow visualization under steady condition, in which a dye is introduced into single-cycle method using the difference of specific gravity between two working fluids is used to evaluate the scavenging efficiency and the trapping efficiency. The 90° shroud system was found to be the highest efficiency system through both flow visualization and single-cycle test, as well as the shroud system to generally be efficient for reducing a short-circuiting flow during scavenging process in a two-stoke engine.

  • PDF

Spray Characterization and Flow Visualization of the Supersonic Liquid Jet by a Projectile Impingement (발사체 충돌에 의한 초음속 액체 제트의 분사 특성 및 유동 가시화)

  • Shin, Jeung-Hwan;Lee, In-Chul;Koo, Ja-Ye;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.27-33
    • /
    • 2011
  • Supersonic liquid jet discharged from a nozzle has been investigated by using a ballistic range which is composed of high-pressure tube, pump tube, launch tube and liquid storage nozzle. High-speed Schlieren optical method was used to visualize the supersonic liquid jet flow field containing shock wave system, and spray droplet diameter was measured by the laser diffraction method. Experiment was performed with various types of nozzle to investigate the major characteristics of the supersonic liquid jet operating at the range of total pressure of 0.8 from 2.14 GPa. The results obtained shows that shock wave considerably affects the detailed atomization process of the liquid jet and as the nozzle diameter decreases, the shock wave angle and the averaged SMD of spray droplet tends to decrease.

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an SI Engine : Part I-Without Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part I-와류가 없는 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.19-27
    • /
    • 2001
  • This paper is the first of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected SI engine by visualization for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been replaced with an air-ethanol mixture to utilize atomized fuel spray for the visualization purposes. This results have been compared with steady flow concentration measurement. For no swirl port, the axial penetration depends on the fuel injection timing. The fuel tends to remain in the upper region of the cylinder far from the spark plug and the distribution is not affected by the injection timing except 90 ATDC.

  • PDF