• Title/Summary/Keyword: visual servoing

Search Result 115, Processing Time 0.026 seconds

On Design of Visual Servoing using an Uncalibrated Camera and a Calibrated Robot

  • Uchikado, Shigeru;Morita, Masahiko;Osa, Yasuhiro;Mabuchi, Tesuo;Tanya, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23.2-23
    • /
    • 2001
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF

Real-Time Control of a SCARA Robot by Visual Servoing with the Stereo Vision

  • S. H. Han;Lee, M. H.;K. Son;Lee, M. C.;Park, J. W.;Lee, J. M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.238-243
    • /
    • 1998
  • This paper presents a new approach to visual servoing with the stereo vision. In order to control the position and orientation of a robot with respect to an object, a new technique is proposed using a binocular stereo vision. The stereo vision enables us to calculate an exact image Jacobian not only at around a desired location but also at the other locations. The suggested technique can guide a robot manipulator to the desired location without giving such priori knowledge as the relative distance to the desired location or the model of an object even if the initial positioning error is large. This paper describes a model of stereo vision and how to generate feedback commands. The performance of the proposed visual servoing system is illustrated by the simulation and experimental results and compared with the case of conventional method fur a SCARA robot.

  • PDF

An Auto-Tunning Fuzzy Rule-Based Visual Servoing Algorithm for a Alave Arm (자동조정 퍼지룰을 이용한 슬레이브 암의 시각서보)

  • Kim, Ju-Gon;Cha, Dong-Hyeok;Kim, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3038-3047
    • /
    • 1996
  • In telerobot systems, visual servoing of a task object for a slave arm with an eye-in-hand has drawn an interesting attention. As such a task ingenerally conducted in an unstructured environment, it is very difficult to define the inverse feature Jacobian matrix. To overcome this difficulty, this paper proposes an auto-tuning fuzzy rule-based visual servo algorithm. In this algorithm, a visual servo controller composed of fuzzy rules, receives feature errors as inputs and generates the change of have position as outputs. The fuzzy rules are tuned by using steepest gradient method of the cost function, which is defined as a quadratic function of feature errors. Since the fuzzy rules are tuned automatically, this method can be applied to the visual servoing of a slave arm in real time. The effctiveness of the proposed algorithm is verified through a series of simulations and experiments. The results show that through the learning procedure, the slave arm and track object in real time with reasonable accuracy.

Visual Servoing of an Eye-In-Hand Robot Based on Features (영상특징을 이용한 로봇의 시각적 구동 방법)

  • Jang, Won;Chung, Myung-Jin;Bien, Zeung-Nam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.32-41
    • /
    • 1990
  • This paper proposes a method of using image features in serving a robot manipulator. Specifically, the con-cept 'feature' is first mathematically defined and then differential relationship between the robot motion and feature vector is derived in terms of Feature Jacobian Matrix and its generalized inverse. Also, by using more features than the number of DOFs of the robot, the visual servoing performance is shown to be improv-ed. Via various examples, the method of feature-based servoing of a robot proposed in this paper is proved to be effective for conducting object-oriented robotic tasks.

  • PDF

Survey on Visual Navigation Technology for Unmanned Systems (무인 시스템의 자율 주행을 위한 영상기반 항법기술 동향)

  • Kim, Hyoun-Jin;Seo, Hoseong;Kim, Pyojin;Lee, Chung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.133-139
    • /
    • 2015
  • This paper surveys vision based autonomous navigation technologies for unmanned systems. Main branches of visual navigation technologies are visual servoing, visual odometry, and visual simultaneous localization and mapping (SLAM). Visual servoing provides velocity input which guides mobile system to desired pose. This input velocity is calculated from feature difference between desired image and acquired image. Visual odometry is the technology that estimates the relative pose between frames of consecutive image. This can improve the accuracy when compared with the exisiting dead-reckoning methods. Visual SLAM aims for constructing map of unknown environment and determining mobile system's location simultaneously, which is essential for operation of unmanned systems in unknown environments. The trend of visual navigation is grasped by examining foreign research cases related to visual navigation technology.

A Study on Visual Feedback Control of Industrial Articulated Robot

  • Shim, Byoung-Kyun;Lee, Woo-Song;Park, In-Man;hwang, Won-Jun;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.1
    • /
    • pp.27-34
    • /
    • 2014
  • This paper proposes a new approach to the designed of visual feedback control system based on visual servoing method. The main focus of this paper is presented how it is effective to use many features for improving the accuracy of the visual feedback control of industrial articulated robot for assembling and inspection of parts. Some rank conditions, which relate the image Jacobian, and the control performance are derived. It is also proven that the accuracy is improved by increasing the number of features. The effectiveness of redundant features is verified by the real time experiments on a SCARA type robot(FARA) made in samsung electronics company.

A Study on Visual Feedback Control of Industrial Articulated Robot (산업용 다관절 로봇의 비주얼 피드백 제어에 관한 연구)

  • Shim, Byoung-Kyun;Han, Sung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2013
  • This paper proposes a new approach to the designed of visual feedback control system based on visual servoing method. The main focus of this paper is presented how it is effective to use many features for improving the accuracy of the visual feedback control of industrial articulated robot for assembling and inspection of parts. Some rank conditions, which relate the image Jacobian, and the control performance are derived. It is also proven that the accuracy is improved by increasing the number of features. The effectiveness of redundant features is verified by the real time experiments on a SCARA type robot(FARA) made in samsung electronics company.

Visual Servoing for Humanoid Robot in a Distributed Environment (분산 환경에서 휴머노이드 로봇의 비주얼 서보잉)

  • Jie, Min-Seok;Hong, Seung-Beom;Lee, Joong-Jae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.705-713
    • /
    • 2009
  • This paper proposes CORBA-based visual servoing system of humanoid robot. To effectively control the humanoid robot which is connected to network, it needs to define necessary services for visual servoing as distribution object, and realize them in the middleware. For realizing it following services should be addressed. Naming service for searching a necessary service with unique name assigned to each object, image service for supplying image obtained from stereo camera. In the experiment, we show the result of balloon tracking and bursting that the robot tracks balloons as target objects in the real time, and if a balloon stop for a certain time, then the robot bursts the balloon.

  • PDF

Visual Servoing of a Wheeled Mobile Robot with the Obstacle Avoidance based on the Nonlinear Optimization using the Modified Cost Function (수정된 비용함수를 이용한 비선형 최적화 방법 기반의 이동로봇의 장애물 회피 비주얼 서보잉)

  • Kim, Gon-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2498-2504
    • /
    • 2009
  • The fundamental research for the mobile robot navigation using the numerical optimization method is presented. We propose an image-based visual servo navigation algorithm for a wheeled mobile robot utilizing a ceiling mounted camera. For the image-based visual servoing, we define the composite image Jacobian which represents the relationship between the speed of wheels of a mobile robot and the robot's overall speed in the image plane. The rotational speed of wheels of a mobile robot can be directly related to the overall speed of a mobile robot in the image plane using the composite image Jacobian. We define the mobile robot navigation problem as an unconstrained optimization problem to minimize the cost function with the image error between the goal position and the position of a mobile robot. In order to avoid the obstacle, the modified cost function is proposed which is composed of the image error between the position of a mobile robot and the goal position and the distance between the position of a mobile robot and the position of the obstacle. The performance was evaluated using the simulation.

A Study on Visual Servoing Application for Robot OLP Compensation (로봇 OLP 보상을 위한 시각 서보잉 응용에 관한 연구)

  • 김진대;신찬배;이재원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.95-102
    • /
    • 2004
  • It is necessary to improve the exactness and adaptation of the working environment in the intelligent robot system. The vision sensor have been studied for this reason fur a long time. However, it is very difficult to perform the camera and robot calibrations because the three dimensional reconstruction and many processes are required for the real usages. This paper suggests the image based visual servoing to solve the problem of old calibration technique and supports OLP(Off-Line-Programming) path compensation. Virtual camera can be modeled from the real factors and virtual images obtained from virtual camera gives more easy perception process. Also, Initial path generated from OLP could be compensated by the pixel level acquired from the real and virtual, respectively. Consequently, the proposed visually assisted OLP teaching remove the calibration and reconstruction process in real working space. With a virtual simulation, the better performance is observed and the robot path error is calibrated by the image differences.