컴퓨터 그래픽스 (Computer Graphics) 및 인간-컴퓨터 상호작용 (Human-Computer Interaction, HCI) 기술을 기반으로 효과적인 데이터 분석을위한 가시화 툴 (Tool) 기술이 크게 발전 하였다. 해당 기술 분야는 Visual Analytics (비주얼애널리틱스)라는 연구 분야로 발전하여 2006년 첫 심포지엄이 열린 이래, 다양한 데이터 마이닝 (Data Mining), 상호작용 (Interaction) 기술이 정보 가시화 (Information Visualization) 기술에 접목하여 사용자 중심의 빅 데이터분석 및 의사 결정 시스템을 연구하는 분야로 확장 되었다. 그러나 국내에서는 아직 해당 연구 분야에 대하여 제대로 알려지지 않아, 국내 컴퓨터 그래픽스 및 HCI 기술 연구에 비하여, 가시화 기술을 통한 빅데이터 분석 및 의사결정을 지원하는 시스템을 설계 하는 기술이 뒤쳐지는 편이다. 따라서 본 논문에서는 비주얼 애널리틱스 연구의 기본 철학을 살펴 보고, IEEE Symposium on Visual Analytics Science and Technology (VAST) 학회에 2015년 출판된 논문으로 사용된 데이터 및 가시화 기술 분석 서베이를 진행함으로써 국내 컴퓨터 그래픽스 연구자들의 해당 분야에 대한 이해를 돕고자 한다.
International Journal of Computer Science & Network Security
/
제23권6호
/
pp.68-76
/
2023
Nowadays, the power of data analytics in general and visual data analytics, in particular, have been proven to be an important area that would help development in any domain. Many well-known IT services best practices have touched on the importance of data analytics and visualization and what it can offer to information technology service management. Yet, little research exists that summarises what is already there and what can be done to utilise further the power of data analytics and visualization in this domain. This paper is divided into two main parts. First, a number of IT service management tools have been summarised with a focus on the data analytics and visualization features in each of them. Second, interviews with five senior IT managers have been conducted to further understand the usage of these features in their organisations and the barriers to fully benefit from them. It was found that the main barriers include a lack of good understanding of some visualization design principles, poor data quality, and limited application of the technology and shortage in data analytics and visualization expertise.
Visual analytics is an emerging research field that combines the strength of electronic data processing and human intuition-based social background knowledge. This study demonstrates useful visual analytics with Tableau in conjunction with semantic network analysis using examples of sentiment flow and strategic communication strategies via Twitter in a blockchain domain. We comparatively investigated the sentiment flow over time and language usage patterns between companies with a good reputation and firms with a poor reputation. In addition, this study explored the relations between reputation and marketing communication strategies. We found that cryptocurrency firms more actively produced information when there was an increased public demand and increased transactions and when the coins' prices were high. Emotional language strategies on social media did not affect cryptocurrencies' reputations. The pattern in semantic representations of keywords was similar between companies with a good reputation and firms with a poor reputation. However, the reputable firms communicated on a wide range of topics and used more culturally focused strategies, and took more advantages of social media marketing by expanding their outreach to other social media networks. The visual big data analytics provides insights into business intelligence that helps informed policies.
International Journal of Computer Science & Network Security
/
제22권9호
/
pp.334-342
/
2022
Nowadays, as we can notice on social media, most users choose to use more than one language in their online postings. Thus, social media analytics needs reviewing as code-switching analytics instead of traditional analytics. This paper aims to present evidence comparable to the accuracy of code-switching analytics techniques in analysing the mood state of social media users. We conducted a systematic literature review (SLR) to study the social media analytics that examined the effectiveness of code-switching analytics techniques. One primary question and three sub-questions have been raised for this purpose. The study investigates the computational models used to detect and measures emotional well-being. The study primarily focuses on online postings text, including the extended text analysis, analysing and predicting using past experiences, and classifying the mood upon analysis. We used thirty-two (32) papers for our evidence synthesis and identified four main task classifications that can be used potentially in code-switching analytics. The tasks include determining analytics algorithms, classification techniques, mood classes, and analytics flow. Results showed that CNN-BiLSTM was the machine learning algorithm that affected code-switching analytics accuracy the most with 83.21%. In addition, the analytics accuracy when using the code-mixing emotion corpus could enhance by about 20% compared to when performing with one language. Our meta-analyses showed that code-mixing emotion corpus was effective in improving the mood analytics accuracy level. This SLR result has pointed to two apparent gaps in the research field: i) lack of studies that focus on Malay-English code-mixing analytics and ii) lack of studies investigating various mood classes via the code-mixing approach.
The 6th International Conference on Construction Engineering and Project Management
/
pp.317-320
/
2015
Documenting work-in-progress on construction sites using images captured with smartphones, point-and-shoot cameras, and Unmanned Aerial Vehicles (UAVs) has gained significant popularity among practitioners. The spatial and temporal density of these large-scale site image collections and the availability of 4D Building Information Models (BIM) provide a unique opportunity to develop BIM-driven visual analytics that can quickly and easily detect and visualize construction progress deviations. Building on these emerging sources of information this paper presents a pipeline for model-driven visual analytics of construction progress. It particularly focuses on the following key steps: 1) capturing, transferring, and storing images; 2) BIM-driven analytics to identify performance deviations, and 3) visualizations that enable root-cause assessments on performance deviations. The information requirements, and the challenges and opportunities for improvements in data collection, plan preparations, progress deviation analysis particularly under limited visibility, and transforming identified deviations into performance metrics to enable root-cause assessments are discussed using several real world case studies.
본 논문에서는 시공간 정보를 포함하는 트윗 스트림에서 비정상적인 이벤트에 대한 상관관계를 사용자에게 시각적으로 분석하는 방법을 다양한 실험을 통하여 제안한다. 제안하는 방법으로는 트윗에서 토픽 모델링을 수행한 다음 계절요인과 추세요인을 반영한 시계열 분석 기법을 이용하여 비정상적인 이벤트 후보군을 추출한다. 추출된 토픽이 포함되어 있는 데이터를 대상으로 다시 한 번 토픽을 추출하여 시계열 분석을 수행한 다음 앞서 추출한 토픽과의 상관관계를 분석하여 비정상적인 이벤트를 탐지할 수 있도록 하였다. 비정상 이벤트를 탐지하는 모든 과정에 시각적 분석 방법을 이용하여 단순한 수치 정보가 아닌 시각적 패턴 형태로 나타냄으로써 사용자는 직관적으로 비정상 이벤트의 동향과 주기적인 패턴을 분석할 수 있도록 하였다. 실험은 2014년 1월 1일부터 2014년 6월 30일까지 국내에서 발생한 트윗을 대상으로 2개의 사건[경주 마우나 리조트 붕괴 사건(2014.02.17.), 진도 여객선 침몰 사건(2014.04.16.)]에 대해 시각적 분석 시스템을 적용하여 사용자는 쉽게 데이터를 분석하고 이해할 수 있음을 보였다.
예측 시각적 분석 연구는 다양한 대화식 데이터 탐색 기법을 사용하여 예측 결과의 불확실성을 줄이는데 중점을 두었다. 대화식 탐색 기법의 목적은 변수간의 관계를 이해하고 알려지지 않은 변수를 예측하기 위한 적합한 모델을 선택함으로서 의사결정권자의 수준에 따른 예측결과의 품질 차이를 줄이는 것이다. 하지만 청소년 신체 성장 데이터와 같이 전체적인 추세가 알려지지 않은 시계열 데이터를 설명할 수 있는 예측 모델을 만드는 것은 어렵다. 본 논문에서는 불확실한 추세를 가지는 시계열 데이터 단편에서 물리적 성장 값을 예측하기 위한 새로운 예측 방법을 제안한다. 새로운 예측 방법은 특정 시점에서의 데이터 분포를 추정하는 방법으로 실험결과 기존 회귀 모델보다 높은 정확도를 갖는다. 또한 우리는 예측 모델링 과정에서 발생 가능한 불확실성을 최소화 할 수 있는 시각적 분석 방법을 제안한다.
사회적 혼란을 야기하는 이벤트는 발생 직후 어떻게 대응하느냐에 따라 소요되는 비용의 편차가 크다. 이에 따라 비정상적인 이벤트를 탐지하고 의미를 파악하는 연구가 많이 진행되고 있다. 또한 예측 분석에 관한 연구도 많이 수행되고 있다. 그러나 대부분의 연구는 이벤트의 전체적인 미래 경향에 대한 수치 결과를 예측할 뿐, 이벤트가 내포하는 의미에 대한 예측 연구는 미비하다. 이에 따라 본 논문에서는 비정상적인 이벤트가 내포하는 토픽의 조합을 통해 미래에 어떠한 일이 발생할 수 있는지에 대한 시각적 예측 분석 방법을 제안한다. 제안하는 방법은 먼저 트윗에서 실시간으로 비정상 이벤트를 탐지한다. 그 다음 과거 유사한 사례를 탐색한 다음 이벤트와 관련된 토픽들을 추출한다. 마지막으로 사용자는 의미 있는 토픽의 조합을 통해 미래에 어떠한 일이 발생할 수 있을지 분석할 수 있다. 실험은 두 가지 상황에 대한 예측 분석을 수행하였으며, 실험 결과 본 논문에서 제안한 방법의 타당성을 입증하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권3호
/
pp.853-873
/
2021
In recent years, deep reinforcement learning (DRL) models are enjoying great interest as their success in a variety of challenging tasks. Deep Q-Network (DQN) is a widely used deep reinforcement learning model, which trains an intelligent agent that executes optimal actions while interacting with an environment. This model is well known for its ability to surpass skilled human players across many Atari 2600 games. Although DQN has achieved excellent performance in practice, there lacks a clear understanding of why the model works. In this paper, we present a visual analytics system for understanding deep Q-network in a non-blind matter. Based on the stored data generated from the training and testing process, four coordinated views are designed to expose the internal execution mechanism of DQN from different perspectives. We report the system performance and demonstrate its effectiveness through two case studies. By using our system, users can learn the relationship between states and Q-values, the function of convolutional layers, the strategies learned by DQN and the rationality of decisions made by the agent.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.