• Title/Summary/Keyword: vision-based techniques

Search Result 296, Processing Time 0.028 seconds

A Study on Visual Saliency Detection in Infrared Images Using Boolean Map Approach

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1183-1195
    • /
    • 2020
  • Visual saliency detection is an essential task because it is an important part of various vision-based applications. There are many techniques for saliency detection in color images. However, the number of methods for saliency detection in infrared images is limited. In this paper, we introduce a simple approach for saliency detection in infrared images based on the thresholding technique. The input image is thresholded into several Boolean maps, and an initial saliency map is calculated as a weighted sum of the created Boolean maps. The initial map is further refined by using thresholding, morphology operation, and a Gaussian filter to produce the final, high-quality saliency map. The experiment showed that the proposed method has high performance when applied to real-life data.

Real-Time Precision Vehicle Localization Using Numerical Maps

  • Han, Seung-Jun;Choi, Jeongdan
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.968-978
    • /
    • 2014
  • Autonomous vehicle technology based on information technology and software will lead the automotive industry in the near future. Vehicle localization technology is a core expertise geared toward developing autonomous vehicles and will provide location information for control and decision. This paper proposes an effective vision-based localization technology to be applied to autonomous vehicles. In particular, the proposed technology makes use of numerical maps that are widely used in the field of geographic information systems and that have already been built in advance. Optimum vehicle ego-motion estimation and road marking feature extraction techniques are adopted and then combined by an extended Kalman filter and particle filter to make up the localization technology. The implementation results of this paper show remarkable results; namely, an 18 ms mean processing time and 10 cm location error. In addition, autonomous driving and parking are successfully completed with an unmanned vehicle within a $300m{\times}500m$ space.

A Propagation Programming Neural Network for Real-time matching of Stereo Images (스테레오 영상의 실시간 정합을 위한 보간 신경망 설계)

  • Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.194-199
    • /
    • 2003
  • Depth error correction effect for maladjusted stereo cameras with calibrated pixel distance parameter is presented. The proposed neural network technique is the real time computation method based theory of inter-node diffusion for searching the safety distances from the sudden appearance-objects during the work driving. The main steps of the distance computation using the theory of stereo vision like the eyes of man is following steps. One is the processing for finding the corresponding points of stereo images and the other is the interpolation processing of full image data from nonlinear image data of objects. All of them request much memory space and time. Therefore the most reliable neural-network algorithm is derived for real-time matching of objects, which is composed of a dynamic programming algorithm based on sequence matching techniques.

  • PDF

A Technique for Alignment to True North Based on Camera in Meteorological Installation (풍황 계측 타워 설치시 카메라를 사용한 진북 맞추기 기법)

  • Yoo Neung Soo;Nam Yoo Su;Lee Jeong Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.122-126
    • /
    • 2005
  • A technique for alignment to true north is presented based on synchronized measurements of vision image by a camera and output voltage of wind direction sensor. The true wind direction is evaluated by means of image processing techniques with least square sense, and then evaluated true value is compared with measured output voltage of the sensor. The uncertainty analysis about the component error for the proposed method in practical situation is performed. The proposed technique is applied to real meteorological tower (wind measuring tower) at the Daekwanryung test site. In addition, some uncertainty analysis of this method is presented.

Vehicle Detection for Adaptive Head-Lamp Control of Night Vision System (적응형 헤드 램프 컨트롤을 위한 야간 차량 인식)

  • Kim, Hyun-Koo;Jung, Ho-Youl;Park, Ju H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, in order to effectively extract spotlight of interest, a pre-signal-processing process based on camera lens filter and labeling method is applied on road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process use light tracking method and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with visible light mono-camera and tested it in urban and rural roads. Through the test, classification performances are above 89% of precision rate and 94% of recall rate evaluated on real-time environment.

Human Action Recognition Using Deep Data: A Fine-Grained Study

  • Rao, D. Surendra;Potturu, Sudharsana Rao;Bhagyaraju, V
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.97-108
    • /
    • 2022
  • The video-assisted human action recognition [1] field is one of the most active ones in computer vision research. Since the depth data [2] obtained by Kinect cameras has more benefits than traditional RGB data, research on human action detection has recently increased because of the Kinect camera. We conducted a systematic study of strategies for recognizing human activity based on deep data in this article. All methods are grouped into deep map tactics and skeleton tactics. A comparison of some of the more traditional strategies is also covered. We then examined the specifics of different depth behavior databases and provided a straightforward distinction between them. We address the advantages and disadvantages of depth and skeleton-based techniques in this discussion.

Transformer-based dense 3D reconstruction from RGB images (RGB 이미지에서 트랜스포머 기반 고밀도 3D 재구성)

  • Xu, Jiajia;Gao, Rui;Wen, Mingyun;Cho, Kyungeun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.646-647
    • /
    • 2022
  • Multiview stereo (MVS) 3D reconstruction of a scene from images is a fundamental computer vision problem that has been thoroughly researched in recent times. Traditionally, MVS approaches create dense correspondences by constructing regularizations and hand-crafted similarity metrics. Although these techniques have achieved excellent results in the best Lambertian conditions, traditional MVS algorithms still contain a lot of artifacts. Therefore, in this study, we suggest using a transformer network to accelerate the MVS reconstruction. The network is based on a transformer model and can extract dense features with 3D consistency and global context, which are necessary to provide accurate matching for MVS.

Fire Detection Based on Image Learning by Collaborating CNN-SVM with Enhanced Recall

  • Yongtae Do
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.119-124
    • /
    • 2024
  • Effective fire sensing is important to protect lives and property from the disaster. In this paper, we present an intelligent visual sensing method for detecting fires based on machine learning techniques. The proposed method involves a two-step process. In the first step, fire and non-fire images are used to train a convolutional neural network (CNN), and in the next step, feature vectors consisting of 256 values obtained from the CNN are used for the learning of a support vector machine (SVM). Linear and nonlinear SVMs with different parameters are intensively tested. We found that the proposed hybrid method using an SVM with a linear kernel effectively increased the recall rate of fire image detection without compromising detection accuracy when an imbalanced dataset was used for learning. This is a major contribution of this study because recall is important, particularly in the sensing of disaster situations such as fires. In our experiments, the proposed system exhibited an accuracy of 96.9% and a recall rate of 92.9% for test image data.

Realtime Analysis of Sasang Constitution Types from Facial Features Using Computer Vision and Machine Learning

  • Abdullah;Shah Mahsoom Ali;Hee-Cheol Kim
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.3
    • /
    • pp.256-266
    • /
    • 2024
  • Sasang constitutional medicine (SCM) is one of the best traditional therapeutic approaches used in Korea. SCM prioritizes personalized treatment that considers the unique constitution of an individual and encompasses their physical characteristics, personality traits, and susceptibility to specific diseases. Facial features are essential for diagnosing Sasang constitutional types (SCTs). This study aimed to develop a real-time artificial intelligence-based model for diagnosing SCTs using facial images, building an SCTs prediction model based on a machine learning method. Facial features from all images were extracted to develop this model using feature engineering and machine learning techniques. The fusion of these features was used to train the AI model. We used four machine learning algorithms, namely, random forest (RF), multilayer perceptron (MLP), gradient boosting machine (GBM), and extreme gradient boosting (XGB), to investigate SCTs. The GBM outperformed all the other models. The highest accuracy achieved in the experiment was 81%, indicating the robustness of the proposed model and suitability for real-time applications.

A Study on Effective Interpretation of AI Model based on Reference (Reference 기반 AI 모델의 효과적인 해석에 관한 연구)

  • Hyun-woo Lee;Tae-hyun Han;Yeong-ji Park;Tae-jin Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.411-425
    • /
    • 2023
  • Today, AI (Artificial Intelligence) technology is widely used in various fields, performing classification and regression tasks according to the purpose of use, and research is also actively progressing. Especially in the field of security, unexpected threats need to be detected, and unsupervised learning-based anomaly detection techniques that can detect threats without adding known threat information to the model training process are promising methods. However, most of the preceding studies that provide interpretability for AI judgments are designed for supervised learning, so it is difficult to apply them to unsupervised learning models with fundamentally different learning methods. In addition, previously researched vision-centered AI mechanism interpretation studies are not suitable for application to the security field that is not expressed in images. Therefore, In this paper, we use a technique that provides interpretability for detected anomalies by searching for and comparing optimization references, which are the source of intrusion attacks. In this paper, based on reference, we propose additional logic to search for data closest to real data. Based on real data, it aims to provide a more intuitive interpretation of anomalies and to promote effective use of an anomaly detection model in the security field.