• Title/Summary/Keyword: vision-based recognition

Search Result 633, Processing Time 0.024 seconds

Two-Stage Deep Learning Based Algorithm for Cosmetic Object Recognition (화장품 물체 인식을 위한 Two-Stage 딥러닝 기반 알고리즘)

  • Jongmin Kim;Daeho Seo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.101-106
    • /
    • 2023
  • With the recent surge in YouTube usage, there has been a proliferation of user-generated videos where individuals evaluate cosmetics. Consequently, many companies are increasingly utilizing evaluation videos for their product marketing and market research. However, a notable drawback is the manual classification of these product review videos incurring significant costs and time. Therefore, this paper proposes a deep learning-based cosmetics search algorithm to automate this task. The algorithm consists of two networks: One for detecting candidates in images using shape features such as circles, rectangles, etc and Another for filtering and categorizing these candidates. The reason for choosing a Two-Stage architecture over One-Stage is that, in videos containing background scenes, it is more robust to first detect cosmetic candidates before classifying them as specific objects. Although Two-Stage structures are generally known to outperform One-Stage structures in terms of model architecture, this study opts for Two-Stage to address issues related to the acquisition of training and validation data that arise when using One-Stage. Acquiring data for the algorithm that detects cosmetic candidates based on shape and the algorithm that classifies candidates into specific objects is cost-effective, ensuring the overall robustness of the algorithm.

A Method of Hand Recognition for Virtual Hand Control of Virtual Reality Game Environment (가상 현실 게임 환경에서의 가상 손 제어를 위한 사용자 손 인식 방법)

  • Kim, Boo-Nyon;Kim, Jong-Ho;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.10 no.2
    • /
    • pp.49-56
    • /
    • 2010
  • In this paper, we propose a control method of virtual hand by the recognition of a user's hand in the virtual reality game environment. We display virtual hand on the game screen after getting the information of the user's hand movement and the direction thru input images by camera. We can utilize the movement of a user's hand as an input interface for virtual hand to select and move the object. As a hand recognition method based on the vision technology, the proposed method transforms input image from RGB color space to HSV color space, then segments the hand area using double threshold of H, S value and connected component analysis. Next, The center of gravity of the hand area can be calculated by 0 and 1 moment implementation of the segmented area. Since the center of gravity is positioned onto the center of the hand, the further apart pixels from the center of the gravity among the pixels in the segmented image can be recognized as fingertips. Finally, the axis of the hand is obtained as the vector of the center of gravity and the fingertips. In order to increase recognition stability and performance the method using a history buffer and a bounding box is also shown. The experiments on various input images show that our hand recognition method provides high level of accuracy and relatively fast stable results.

Real-time 3D Feature Extraction Combined with 3D Reconstruction (3차원 물체 재구성 과정이 통합된 실시간 3차원 특징값 추출 방법)

  • Hong, Kwang-Jin;Lee, Chul-Han;Jung, Kee-Chul;Oh, Kyoung-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.12
    • /
    • pp.789-799
    • /
    • 2008
  • For the communication between human and computer in an interactive computing environment, the gesture recognition has been studied vigorously. The algorithms which use the 2D features for the feature extraction and the feature comparison are faster, but there are some environmental limitations for the accurate recognition. The algorithms which use the 2.5D features provide higher accuracy than 2D features, but these are influenced by rotation of objects. And the algorithms which use the 3D features are slow for the recognition, because these algorithms need the 3d object reconstruction as the preprocessing for the feature extraction. In this paper, we propose a method to extract the 3D features combined with the 3D object reconstruction in real-time. This method generates three kinds of 3D projection maps using the modified GPU-based visual hull generation algorithm. This process only executes data generation parts only for the gesture recognition and calculates the Hu-moment which is corresponding to each projection map. In the section of experimental results, we compare the computational time of the proposed method with the previous methods. And the result shows that the proposed method can apply to real time gesture recognition environment.

An Exploratory Study on the Recognition of Experience of Passing Down Education of the Korean Traditional Dance -Focusing on the National Intangible Cultural Assets: Seungmu, Salpurichum and Taepyeongmu- (한국 전통춤 전수교육의 경험인식에 대한 탐색적 연구 -국가무형문화재 승무, 살풀이춤, 태평무를 중심으로-)

  • Lee, Soon-hwa;Ahn, Byoung-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.9
    • /
    • pp.122-134
    • /
    • 2019
  • This study aims to conceptualize characteristics of the Korean traditional dance, and to categorize and analyze the recognition of experience of passing down education of Seungmu(Buddhist Dance), Salpurichum(Exorcism Dance) and Taepyeongmu(Dance of Peace). Dividing into groups of two: an experienced person twenty years or more in the Korean dance and a person who completed the traditional dance three years or more, three groups were selected. We connected the characteristics of the traditional dance experienced in passing down education with the recognition experience in the training courses. Categorizing thematically the process and the recognition of experience in the passing down education program, we attempted mutual group discussion and inductive area analysis on the basis of in-depth interview, tutorial discussion and analysis contents. As a result of this study, first, the characteristics of the Korean traditional dance that graduates of the program by repertory empathize were the experience of the sinmyung(the excess of mirth) and improvisation, the supreme self-controlling beauty and the best beauty of expression. Second, the recognition of experience in the passing down education program runs as follows: Interacting in the centre of the process, new education system for transmission, and formation of social discourse for appreciation. Conclusionally, the experience and the new vision for transmission of passing down education of the traditional dance are required to be based on the appreciation of the rationality of mutual communication and recognition of experience.

Improvement of Face Recognition Algorithm for Residential Area Surveillance System Based on Graph Convolution Network (그래프 컨벌루션 네트워크 기반 주거지역 감시시스템의 얼굴인식 알고리즘 개선)

  • Tan Heyi;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.1-15
    • /
    • 2024
  • The construction of smart communities is a new method and important measure to ensure the security of residential areas. In order to solve the problem of low accuracy in face recognition caused by distorting facial features due to monitoring camera angles and other external factors, this paper proposes the following optimization strategies in designing a face recognition network: firstly, a global graph convolution module is designed to encode facial features as graph nodes, and a multi-scale feature enhancement residual module is designed to extract facial keypoint features in conjunction with the global graph convolution module. Secondly, after obtaining facial keypoints, they are constructed as a directed graph structure, and graph attention mechanisms are used to enhance the representation power of graph features. Finally, tensor computations are performed on the graph features of two faces, and the aggregated features are extracted and discriminated by a fully connected layer to determine whether the individuals' identities are the same. Through various experimental tests, the network designed in this paper achieves an AUC index of 85.65% for facial keypoint localization on the 300W public dataset and 88.92% on a self-built dataset. In terms of face recognition accuracy, the proposed network achieves an accuracy of 83.41% on the IBUG public dataset and 96.74% on a self-built dataset. Experimental results demonstrate that the network designed in this paper exhibits high detection and recognition accuracy for faces in surveillance videos.

Positioning Method Using a Vehicular Black-Box Camera and a 2D Barcode in an Indoor Parking Lot (스마트폰 카메라와 2차원 바코드를 이용한 실내 주차장 내 측위 방법)

  • Song, Jihyun;Lee, Jae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.142-152
    • /
    • 2016
  • GPS is not able to be used for indoor positioning and currently most of techniques emerging to overcome the limit of GPS utilize private wireless networks. However, these methods require high costs for installation and maintenance, and they are inappropriate to be used in the place where precise positioning is needed as in indoor parking lots. This paper proposes a vehicular indoor positioning method based on QR-code recognition. The method gets an absolute coordinate through QR-code scanning, and obtain the location (an relative coordinate) of a black-box camera using the tilt and roll angle correction through affine transformation, scale transformation, and trigonometric function. Using these information of an absolute coordinate and an relative one, the precise position of a car is estimated. As a result, average error of 13.79cm is achieved and it corresponds to just 27.6% error rate in contrast to 50cm error of the recent technique based on wireless networks.

Illumination Robust Feature Descriptor Based on Exact Order (조명 변화에 강인한 엄격한 순차 기반의 특징점 기술자)

  • Kim, Bongjoe;Sohn, Kwanghoon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.77-87
    • /
    • 2013
  • In this paper, we present a novel method for local image descriptor called exact order based descriptor (EOD) which is robust to illumination changes and Gaussian noise. Exact orders of image patch is induced by changing discrete intensity value into k-dimensional continuous vector to resolve the ambiguity of ordering for same intensity pixel value. EOD is generated from overall distribution of exact orders in the patch. The proposed local descriptor is compared with several state-of-the-art descriptors over a number of images. Experimental results show that the proposed method outperforms many state-of-the-art descriptors in the presence of illumination changes, blur and viewpoint change. Also, the proposed method can be used for many computer vision applications such as face recognition, texture recognition and image analysis.

Robust Human Silhouette Extraction Using Graph Cuts (그래프 컷을 이용한 강인한 인체 실루엣 추출)

  • Ahn, Jung-Ho;Kim, Kil-Cheon;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.52-58
    • /
    • 2007
  • In this paper we propose a new robust method to extract accurate human silhouettes indoors with active stereo camera. A prime application is for gesture recognition of mobile robots. The segmentation of distant moving objects includes many problems such as low resolution, shadows, poor stereo matching information and instabilities of the object and background color distributions. There are many object segmentation methods based on color or stereo information but they alone are prone to failure. Here efficient color, stereo and image segmentation methods are fused to infer object and background areas of high confidence. Then the inferred areas are incorporated in graph cut to make human silhouette extraction robust and accurate. Some experimental results are presented with image sequences taken using pan-tilt stereo camera. Our proposed algorithms are evaluated with respect to ground truth data and proved to outperform some methods based on either color/stereo or color/contrast alone.

Robust Hand Region Extraction Using a Joint-based Model (관절 기반의 모델을 활용한 강인한 손 영역 추출)

  • Jang, Seok-Woo;Kim, Sul-Ho;Kim, Gye-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.525-531
    • /
    • 2019
  • Efforts to utilize human gestures to effectively implement a more natural and interactive interface between humans and computers have been ongoing in recent years. In this paper, we propose a new algorithm that accepts consecutive three-dimensional (3D) depth images, defines a hand model, and robustly extracts the human hand region based on six palm joints and 15 finger joints. Then, the 3D depth images are adaptively binarized to exclude non-interest areas, such as the background, and accurately extracts only the hand of the person, which is the area of interest. Experimental results show that the presented algorithm detects only the human hand region 2.4% more accurately than the existing method. The hand region extraction algorithm proposed in this paper is expected to be useful in various practical applications related to computer vision and image processing, such as gesture recognition, virtual reality implementation, 3D motion games, and sign recognition.

Development of an Improved Geometric Path Tracking Algorithm with Real Time Image Processing Methods (실시간 이미지 처리 방법을 이용한 개선된 차선 인식 경로 추종 알고리즘 개발)

  • Seo, Eunbin;Lee, Seunggi;Yeo, Hoyeong;Shin, Gwanjun;Choi, Gyeungho;Lim, Yongseob
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2021
  • In this study, improved path tracking control algorithm based on pure pursuit algorithm is newly proposed by using improved lane detection algorithm through real time post-processing with interpolation methodology. Since the original pure pursuit works well only at speeds below 20 km/h, the look-ahead distance is implemented as a sigmoid function to work well at an average speed of 45 km/h to improve tracking performance. In addition, a smoothing filter was added to reduce the steering angle vibration of the original algorithm, and the stability of the steering angle was improved. The post-processing algorithm presented has implemented more robust lane recognition system using real-time pre/post processing method with deep learning and estimated interpolation. Real time processing is more cost-effective than the method using lots of computing resources and building abundant datasets for improving the performance of deep learning networks. Therefore, this paper also presents improved lane detection performance by using the final results with naive computer vision codes and pre/post processing. Firstly, the pre-processing was newly designed for real-time processing and robust recognition performance of augmentation. Secondly, the post-processing was designed to detect lanes by receiving the segmentation results based on the estimated interpolation in consideration of the properties of the continuous lanes. Consequently, experimental results by utilizing driving guidance line information from processing parts show that the improved lane detection algorithm is effective to minimize the lateral offset error in the diverse maneuvering roads.