• Title/Summary/Keyword: vision-based recognition

Search Result 633, Processing Time 0.035 seconds

Design of Computer Vision Interface by Recognizing Hand Motion (손동작 인식에 의한 컴퓨터 비전 인터페이스 설계)

  • Yun, Jin-Hyun;Lee, Chong-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • As various interfacing devices for computational machines are being developed, a new HCI method using hand motion input is introduced. This interface method is a vision-based approach using a single camera for detecting and tracking hand movements. In the previous researches, only a skin color is used for detecting and tracking hand location. However, in our design, skin color and shape information are collectively considered. Consequently, detection ability of a hand increased. we proposed primary orientation edge descriptor for getting an edge information. This method uses only one hand model. Therefore, we do not need training processing time. This system consists of a detecting part and a tracking part for efficient processing. In tracking part, the system is quite robust on the orientation of the hand. The system is applied to recognize a hand written number in script style using DNAC algorithm. Performance of the proposed algorithm reaches 82% recognition ratio in detecting hand region and 90% in recognizing a written number in script style.

Fast Hand-Gesture Recognition Algorithm For Embedded System (임베디드 시스템을 위한 고속의 손동작 인식 알고리즘)

  • Hwang, Dong-Hyun;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1349-1354
    • /
    • 2017
  • In this paper, we propose a fast hand-gesture recognition algorithm for embedded system. Existing hand-gesture recognition algorithm has a difficulty to use in a low performance system such as embedded systems and mobile devices because of high computational complexity of contour tracing method that extracts all points of hand contour. Instead of using algorithms based on contour tracing, the proposed algorithm uses concentric-circle tracing method to estimate the abstracted contour of fingers, then classify hand-gestures by extracting features. The proposed algorithm has an average recognition rate of 95% and an average execution time of 1.29ms, which shows a maximum performance improvement of 44% compared with algorithm using the existing contour tracing method. It is confirmed that the algorithm can be used in a low performance system such as embedded systems and mobile devices.

Development of a real-time crop recognition system using a stereo camera

  • Baek, Seung-Min;Kim, Wan-Soo;Kim, Yong-Joo;Chung, Sun-Ok;Nam, Kyu-Chul;Lee, Dae Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.315-326
    • /
    • 2020
  • In this study, a real-time crop recognition system was developed for an unmanned farm machine for upland farming. The crop recognition system was developed based on a stereo camera, and an image processing framework was proposed that consists of disparity matching, localization of crop area, and estimation of crop height with coordinate transformations. The performance was evaluated by attaching the crop recognition system to a tractor for five representative crops (cabbage, potato, sesame, radish, and soybean). The test condition was set at 3 levels of distances to the crop (100, 150, and 200 cm) and 5 levels of camera height (42, 44, 46, 48, and 50 cm). The mean relative error (MRE) was used to compare the height between the measured and estimated results. As a result, the MRE of Chinese cabbage was the lowest at 1.70%, and the MRE of soybean was the highest at 4.97%. It is considered that the MRE of the crop which has more similar distribution lower. the results showed that all crop height was estimated with less than 5% MRE. The developed crop recognition system can be applied to various agricultural machinery which enhances the accuracy of crop detection and its performance in various illumination conditions.

The Recognition of Crack Detection Using Difference Image Analysis Method based on Morphology (모폴로지 기반의 차영상 분석기법을 이용한 균열검출의 인식)

  • Byun Tae-bo;Kim Jang-hyung;Kim Hyung-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.197-205
    • /
    • 2006
  • This paper presents the moving object tracking method using vision system. In order to track object in real time, the image of moving object have to be located the origin of the image coordinate axes. Accordingly, Fuzzy Control System is investigated for tracking the moving object, which control the camera module with Pan/Tilt mechanism. Hereafter, so the this system is applied to mobile robot, we design and implement image processing board for vision system. Also fuzzy controller is implemented to the StrongArm board. Finally, the proposed fuzzy controller is useful for the real-time moving object tracking system by experiment.

Development of Vision Based Steering System for Unmanned Vehicle Using Robust Control

  • Jeong, Seung-Gweon;Lee, Chun-Han;Park, Gun-Hong;Shin, Taek-Young;Kim, Ji-Han;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1700-1705
    • /
    • 2003
  • In this paper, the automatic steering system for unmanned vehicle was developed. The vision system is used for the lane detection system. This paper defines two modes for detecting lanes on a road. First is searching mode and the other is recognition mode. We use inverse perspective transform and a linear approximation filter for accurate lane detections. The PD control theory is used for the design of the controller to compare with $H_{\infty}$ control theory. The $H_{\infty}$ control theory is used for the design of the controller to reduce the disturbance. The performance of the PD controller and $H_{\infty}$ controller is compared in simulations and tests. The PD controller is easy to tune in the test site. The $H_{\infty}$ controller is robust for the disturbances in the test results.

  • PDF

A Task Scheduling Strategy in a Multi-core Processor for Visual Object Tracking Systems (시각물체 추적 시스템을 위한 멀티코어 프로세서 기반 태스크 스케줄링 방법)

  • Lee, Minchae;Jang, Chulhoon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.127-136
    • /
    • 2016
  • The camera based object detection systems should satisfy the recognition performance as well as real-time constraints. Particularly, in safety-critical systems such as Autonomous Emergency Braking (AEB), the real-time constraints significantly affects the system performance. Recently, multi-core processors and system-on-chip technologies are widely used to accelerate the object detection algorithm by distributing computational loads. However, due to the advanced hardware, the complexity of system architecture is increased even though additional hardwares improve the real-time performance. The increased complexity also cause difficulty in migration of existing algorithms and development of new algorithms. In this paper, to improve real-time performance and design complexity, a task scheduling strategy is proposed for visual object tracking systems. The real-time performance of the vision algorithm is increased by applying pipelining to task scheduling in a multi-core processor. Finally, the proposed task scheduling algorithm is applied to crosswalk detection and tracking system to prove the effectiveness of the proposed strategy.

Vision Based Estimation of 3-D Position of Target for Target Following Guidance/Control of UAV (무인 항공기의 목표물 추적을 위한 영상 기반 목표물 위치 추정)

  • Kim, Jong-Hun;Lee, Dae-Woo;Cho, Kyeum-Rae;Jo, Seon-Yeong;Kim, Jung-Ho;Han, Dong-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1205-1211
    • /
    • 2008
  • This paper describes methods to estimate 3-D position of target with respect to reference frame through monocular image from unmanned aerial vehicle (UAV). 3-D position of target is used as information for surveillance, recognition and attack. In this paper. 3-D position of target is estimated to make guidance and control law, which can follow target, user interested. It is necessary that position of target is measured in image to solve 3-D position of target. In this paper, kalman filter is used to track and output position of target in image. Estimation of target's 3-D position is possible using result of image tracking and information of UAV and camera. To estimate this, two algorithms are used. One is methode from arithmetic derivation of dynamics between UAV, carmer, and target. The other is LPV (Linear Parametric Varying). These methods have been run on simulation, and compared in this paper.

Optical Implementation of Associative Menory Based on Two-Dimensional Neural Network Model (2차원 신경회로망 모델에 근거한 광연상 메모리의 실현)

  • 한종욱;박인호;이승현;이우상;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.8
    • /
    • pp.667-677
    • /
    • 1990
  • In this paper, optical inplementation of the Hopfield neural network model for two-dimensinal associative memory is described For the real-time processing of two-dimensional images, the commercial LCTVs are used as a memory mask and an input spatical light modulator. A 4-D memory matrix is realized with a 2-D mask of a matrix arrangement and the inner-products between arbitrary input pattern and memory matrix are carried out by using the multifocus hololens. The output image is then electronically thresholded and fed back to the input of the associative memory system by 2-D CCd camera. From the good experimental results for the high error correction capability, the proposed system can be applied to practical pattern recognition and machine vision systems.

  • PDF

LATERAL CONTROL OF AUTONOMOUS VEHICLE USING SEVENBERG-MARQUARDT NEURAL NETWORK ALGORITHM

  • Kim, Y.-B.;Lee, K.-B.;Kim, Y.-J.;Ahn, O.-S.
    • International Journal of Automotive Technology
    • /
    • v.3 no.2
    • /
    • pp.71-78
    • /
    • 2002
  • A new control method far vision-based autonomous vehicle is proposed to determine navigation direction by analyzing lane information from a camera and to navigate a vehicle. In this paper, characteristic featured data points are extracted from lane images using a lane recognition algorithm. Then the vehicle is controlled using new Levenberg-Marquardt neural network algorithm. To verify the usefulness of the algorithm, another algorithm, which utilizes the geometric relation of a camera and vehicle, is introduced. The second one involves transformation from an image coordinate to a vehicle coordinate, then steering is determined from Ackermann angle. The steering scheme using Ackermann angle is heavily depends on the correct geometric data of a vehicle and a camera. Meanwhile, the proposed neural network algorithm does not need geometric relations and it depends on the driving style of human driver. The proposed method is superior than other referenced neural network algorithms such as conjugate gradient method or gradient decent one in autonomous lateral control .

A study on the inspection algorithm of FIC device in chip mounter (칩 마운터에의 FIC 부품 인식에 관한 연구)

  • Lyou, Kyoung;Moon, Yun-Shik;Kim, Kyoung-Min;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.384-391
    • /
    • 1998
  • When a device is mounted on the PCB, it is impossible to have zero defects due to many unpredictable problems. Among these problems, devices with bent corner leads due to mis-handling and which are not placed at a given point measured along the axis are principal problem in SMT(Surface Mounting Technology). It is obvious that given the complexity of the inspection task, the efficiency of a human inspection is questionable. Thus, new technologies for inspection of SMD(Surface Mounting Device) should be explored. An example of such technologies is the Automated Visual Inspection(AVI), wherein the vision system plays a key role to correct this problem. In implementing vision system, high-speed and high-precision are indispensable for practical purposes. In this paper, a new algorithm based on the Radon transform which uses a projection technique to inspect the FIC(Flat Integrated Circuit) device is proposed. The proposed algorithm is compared with other algorithms by measuring the position error(center and angle) and the processing time for the device image, characterized by line scan camera.

  • PDF