• Title/Summary/Keyword: vision-based recognition

Search Result 633, Processing Time 0.028 seconds

A Study on the Revelation of Materiality in Landscape Architecture - Focusing on the Concept of Materiality and the Significance of Materiality as Landscape Design Media - (조경에서의 물성 발현에 관한 연구 - 물성의 개념과 조경설계매체로서 물성의 의의를 중심으로 -)

  • Moon, Ji-Won;Cho, Jung-Song
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.5 s.112
    • /
    • pp.1-14
    • /
    • 2005
  • This study describes the recognition and the application of materials corresponding to the formative language of landscape design as the formative process of creating connote forms and meanings in a space. The purpose of this study is to propose the significance of materiality not only for conveying the meaning of landscape but also for providing expanded experience through synesthetic perception. The study consists of two parts: (1) The concept of materiality in landscape architecture is studied in three categories, which are divided in chronological order when the recognition of materials was changed. (2) Based on this exploration of the concept of materiality and the ways of expressing it that have developed from landscape arts to landscape architecture, the significance of materiality as the medium of contemporary landscape design is proposed. Breaking from previous technical and engineering approaches to materials and from a vision-centered recognition of materials, this study focuses on aesthetic and semantic aspects of materiality and is based on multidimensional recognition though synesthesia. Materiality has significance not only as the dynamic medium that carries the meaning of landscape by providing connections with the surrounding environmental context, but also as the engagement medium that expands observers' experiences with the environment through synesthesia. The study of materiality as the medium of landscape design would contribute to expanding the scope of the language of landscape design and to expressing the meaning of landscape through materiality being revealed on the basis of converted recognition of materials.

Image Tracking Based Lane Departure Warning and Forward Collision Warning Methods for Commercial Automotive Vehicle (이미지 트래킹 기반 상용차용 차선 이탈 및 전방 추돌 경고 방법)

  • Kim, Kwang Soo;Lee, Ju Hyoung;Kim, Su Kwol;Bae, Myung Won;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.235-240
    • /
    • 2015
  • Active Safety system is requested on the market of the medium and heavy duty commercial vehicle over 4.5ton beside the market of passenger car with advancement of the digital equipment proportionally. Unlike the passenger car, the mounting position of camera in case of the medium and heavy duty commercial vehicle is relatively high, it is disadvantaged conditions for lane recognition in contradiction to passenger car. In this work, we show the method of lane recognition through the Sobel edge, based on the spatial domain processing, Hough transform and color conversion correction. Also we suggest the low error method of front vehicles recognition in order to reduce the detection error through Haar-like, Adaboost, SVM and Template matching, etc., which are the object recognition methods by frontal camera vision. It is verified that the reliability over 98% on lane recognition is obtained through the vehicle test.

Performance Improvement of Traffic Signal Lights Recognition Based on Adaptive Morphological Analysis (적응적 형태학적 분석에 기초한 신호등 인식률 성능 개선)

  • Kim, Jae-Gon;Kim, Jin-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2129-2137
    • /
    • 2015
  • Lots of research and development works have been actively focused on the self-driving vehicles, locally and globally. In order to implement the self-driving vehicles, lots of fundamental core technologies need to be successfully developed and, specially, it is noted that traffic lights detection and recognition system is an essential part of the computer vision technologies in the self-driving vehicles. Up to nowadays, most conventional algorithm for detecting and recognizing traffic lights are mainly based on the color signal analysis, but these approaches have limits on the performance improvements that can be achieved due to the color signal noises and environmental situations. In order to overcome the performance limits, this paper introduces the morphological analysis for the traffic lights recognition. That is, by considering the color component analysis and the shape analysis such as rectangles and circles simultaneously, the efficiency of the traffic lights recognitions can be greatly increased. Through several simulations, it is shown that the proposed method can highly improve the recognition rate as well as the mis-recognition rate.

Morphological Hand-Gesture Recognition Algorithm (형태론적 손짓 인식 알고리즘)

  • Choi Jong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1725-1731
    • /
    • 2004
  • The use of gestures provides an attractive alternate to cumbersome interface devices for human-computer interaction. This has motivated a very active research area concerned with computer vision-based analysis and interpretation of hand gestures. The most important issues in gesture recognition are the simplification of algorithm and the reduction of processing time. The mathematical morphology based on geometrical set theory is best used to perform the processing. A key idea of proposed algorithm in this paper is to apply morphological shape decomposition. The primitive elements extracted to a hand gesture include in very important information on the directivity of the hand gestures. Based on this characteristic, we proposed the morphological gesture recognition algorithm using feature vectors calculated to lines connecting the center points of a main-primitive element and sub-primitive elements. Through the experiment, we demonstrated the efficiency of proposed algorithm. Coupling natural interactions such as hand gesture with an appropriately designed interface is a valuable and powerful component in the building of TV switch navigating and video contents browsing system.

Activity Recognition based on Multi-modal Sensors using Dynamic Bayesian Networks (동적 베이지안 네트워크를 이용한 델티모달센서기반 사용자 행동인식)

  • Yang, Sung-Ihk;Hong, Jin-Hyuk;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.1
    • /
    • pp.72-76
    • /
    • 2009
  • Recently, as the interest of ubiquitous computing has been increased there has been lots of research about recognizing human activities to provide services in this environment. Especially, in mobile environment, contrary to the conventional vision based recognition researches, lots of researches are sensor based recognition. In this paper we propose to recognize the user's activity with multi-modal sensors using hierarchical dynamic Bayesian networks. Dynamic Bayesian networks are trained by the OVR(One-Versus-Rest) strategy. The inferring part of this network uses less calculation cost by selecting the activity with the higher percentage of the result of a simpler Bayesian network. For the experiment, we used an accelerometer and a physiological sensor recognizing eight kinds of activities, and as a result of the experiment we gain 97.4% of accuracy recognizing the user's activity.

Realtime Facial Expression Recognition from Video Sequences Using Optical Flow and Expression HMM (광류와 표정 HMM에 의한 동영상으로부터의 실시간 얼굴표정 인식)

  • Chun, Jun-Chul;Shin, Gi-Han
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.55-70
    • /
    • 2009
  • Vision-based Human computer interaction is an emerging field of science and industry to provide natural way to communicate with human and computer. In that sense, inferring the emotional state of the person based on the facial expression recognition is an important issue. In this paper, we present a novel approach to recognize facial expression from a sequence of input images using emotional specific HMM (Hidden Markov Model) and facial motion tracking based on optical flow. Conventionally, in the HMM which consists of basic emotional states, it is considered natural that transitions between emotions are imposed to pass through neutral state. However, in this work we propose an enhanced transition framework model which consists of transitions between each emotional state without passing through neutral state in addition to a traditional transition model. For the localization of facial features from video sequence we exploit template matching and optical flow. The facial feature displacements traced by the optical flow are used for input parameters to HMM for facial expression recognition. From the experiment, we can prove that the proposed framework can effectively recognize the facial expression in real time.

  • PDF

Improved Environment Recognition Algorithms for Autonomous Vehicle Control (자율주행 제어를 위한 향상된 주변환경 인식 알고리즘)

  • Bae, Inhwan;Kim, Yeounghoo;Kim, Taekyung;Oh, Minho;Ju, Hyunsu;Kim, Seulki;Shin, Gwanjun;Yoon, Sunjae;Lee, Chaejin;Lim, Yongseob;Choi, Gyeungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.35-43
    • /
    • 2019
  • This paper describes the improved environment recognition algorithms using some type of sensors like LiDAR and cameras. Additionally, integrated control algorithm for an autonomous vehicle is included. The integrated algorithm was based on C++ environment and supported the stability of the whole driving control algorithms. As to the improved vision algorithms, lane tracing and traffic sign recognition were mainly operated with three cameras. There are two algorithms developed for lane tracing, Improved Lane Tracing (ILT) and Histogram Extension (HIX). Two independent algorithms were combined into one algorithm - Enhanced Lane Tracing with Histogram Extension (ELIX). As for the enhanced traffic sign recognition algorithm, integrated Mutual Validation Procedure (MVP) by using three algorithms - Cascade, Reinforced DSIFT SVM and YOLO was developed. Comparing to the results for those, it is convincing that the precision of traffic sign recognition is substantially increased. With the LiDAR sensor, static and dynamic obstacle detection and obstacle avoidance algorithms were focused. Therefore, improved environment recognition algorithms, which are higher accuracy and faster processing speed than ones of the previous algorithms, were proposed. Moreover, by optimizing with integrated control algorithm, the memory issue of irregular system shutdown was prevented. Therefore, the maneuvering stability of the autonomous vehicle in severe environment were enhanced.

Neuro-Net Based Automatic Sorting And Grading of A Mushroom (Lentinus Edodes L)

  • Hwang, H.;Lee, C.H.;Han, J.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1243-1253
    • /
    • 1993
  • Visual features of a mushroom(Lentinus Edodes L) are critical in sorting and grading as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. Though actions involved in human grading looks simple, a decision making undereath the simple action comes form the results of the complex neural processing of the visual image. And processing details involved in the visual recognition of the human brain has not been fully investigated yet. Recently, however, an artificial neural network has drawn a great attention because of its functional capability as a partial substitute of the human brain. Since most agricultural products are not uniquely defined in its physical properties and do not have a well defined job structure, a research of the neuro-net based human like information processing toward the agricultural product and processing are widely open and promising. In this pape , neuro-net based grading and sorting system was developed for a mushroom . A computer vision system was utilized for extracting and quantifying the qualitative visual features of sampled mushrooms. The extracted visual features and their corresponding grades were used as input/output pairs for training the neural network and the trained results of the network were presented . The computer vision system used is composed of the IBM PC compatible 386DX, ITEX PFG frame grabber, B/W CCD camera , VGA color graphic monitor , and image output RGB monitor.

  • PDF

Survey: Tabletop Display Techniques for Multi-Touch Recognition (멀티터치를 위한 테이블-탑 디스플레이 기술 동향)

  • Kim, Song-Gook;Lee, Chil-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.84-91
    • /
    • 2007
  • Recently, the researches based on vision about user attention and action awareness are being pushed actively for human computer interaction. Among them, various applications of tabletop display system are developed more in accordance with touch sensing technique, co-located and collaborative work. Formerly, although supported only one user, support multi-user at present. Therefore, collaborative work and interaction of four elements (human, computer, displayed objects, physical objects) that is ultimate goal of tabletop display are realizable. Generally, tabletop display system designs according to four key aspects. 1)multi-touch interaction using bare hands. 2)implementation of collaborative work, simultaneous user interaction. 3)direct touch interaction. 4)use of physical objects as an interaction tool. In this paper, we describe a critical analysis of the state-of-the-art in advanced multi-touch sensing techniques for tabletop display system according to the four methods: vision based method, non-vision based method, top-down projection system and rear projection system. And we also discuss some problems and practical applications in the research field.

Error Correction Algorithm of Position-Coded Pattern for Hybrid Indoor Localization (위치패턴 기반 하이브리드 실내 측위를 위한 위치 인식 오류 보정 알고리즘)

  • Kim, Sanghoon;Lee, Seunggol;Kim, Yoo-Sung;Park, Jaehyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.119-124
    • /
    • 2013
  • Recent increasing demand on the indoor localization requires more advanced and hybrid technology. This paper proposes an application of the hybrid indoor localization method based on a position-coded pattern that can be used with other existing indoor localization techniques such as vision, beacon, or landmark technique. To reduce the pattern-recognition error rate, the error detection and correction algorithm was applied based on Hamming code. The indoor localization experiments based on the proposed algorithm were performed by using a QCIF-grade CMOS sensor and a position-coded pattern with an area of $1.7{\times}1.7mm^2$. The experiments have shown that the position recognition error ratio was less than 0.9 % with 0.4 mm localization accuracy. The results suggest that the proposed method could be feasibly applied for the localization of the indoor mobile service robots.