• Title/Summary/Keyword: vision-based recognition

Search Result 633, Processing Time 0.033 seconds

Vision System for NN-based Emotion Recognition (신경회로망 기반 감성 인식 비젼 시스템)

  • Lee, Sang-Yun;Kim, Sung-Nam;Joo, Young-Hoon;Park, Chang-Hyun;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2036-2038
    • /
    • 2001
  • In this paper, we propose the neural network based emotion recognition method for intelligently recognizing the human's emotion using vision system. In the proposed method, human's emotion is divided into four emotion (surprise, anger, happiness, sadness). Also, we use R,G,B(red, green, blue) color image data and the gray image data to get the highly trust rate of feature point extraction. For this, we propose an algorithm to extract four feature points (eyebrow, eye, nose, mouth) from the face image acquired by the color CCD camera and find some feature vectors from those. And then we apply back-prapagation algorithm to the secondary feature vector(position and distance among the feature points). Finally, we show the practical application possibility of the proposed method.

  • PDF

Vision-based garbage dumping action detection for real-world surveillance platform

  • Yun, Kimin;Kwon, Yongjin;Oh, Sungchan;Moon, Jinyoung;Park, Jongyoul
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.494-505
    • /
    • 2019
  • In this paper, we propose a new framework for detecting the unauthorized dumping of garbage in real-world surveillance camera. Although several action/behavior recognition methods have been investigated, these studies are hardly applicable to real-world scenarios because they are mainly focused on well-refined datasets. Because the dumping actions in the real-world take a variety of forms, building a new method to disclose the actions instead of exploiting previous approaches is a better strategy. We detected the dumping action by the change in relation between a person and the object being held by them. To find the person-held object of indefinite form, we used a background subtraction algorithm and human joint estimation. The person-held object was then tracked and the relation model between the joints and objects was built. Finally, the dumping action was detected through the voting-based decision module. In the experiments, we show the effectiveness of the proposed method by testing on real-world videos containing various dumping actions. In addition, the proposed framework is implemented in a real-time monitoring system through a fast online algorithm.

Research on Korea Text Recognition in Images Using Deep Learning (딥 러닝 기법을 활용한 이미지 내 한글 텍스트 인식에 관한 연구)

  • Sung, Sang-Ha;Lee, Kang-Bae;Park, Sung-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.1-6
    • /
    • 2020
  • In this study, research on character recognition, which is one of the fields of computer vision, was conducted. Optical character recognition, which is one of the most widely used character recognition techniques, suffers from decreasing recognition rate if the recognition target deviates from a certain standard and format. Hence, this study aimed to address this limitation by applying deep learning techniques to character recognition. In addition, as most character recognition studies have been limited to English or number recognition, the recognition range has been expanded through additional data training on Korean text. As a result, this study derived a deep learning-based character recognition algorithm for Korean text recognition. The algorithm obtained a score of 0.841 on the 1-NED evaluation method, which is a similar result to that of English recognition. Further, based on the analysis of the results, major issues with Korean text recognition and possible future study tasks are introduced.

Boosting the Face Recognition Performance of Ensemble Based LDA for Pose, Non-uniform Illuminations, and Low-Resolution Images

  • Haq, Mahmood Ul;Shahzad, Aamir;Mahmood, Zahid;Shah, Ayaz Ali;Muhammad, Nazeer;Akram, Tallha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3144-3164
    • /
    • 2019
  • Face recognition systems have several potential applications, such as security and biometric access control. Ongoing research is focused to develop a robust face recognition algorithm that can mimic the human vision system. Face pose, non-uniform illuminations, and low-resolution are main factors that influence the performance of face recognition algorithms. This paper proposes a novel method to handle the aforementioned aspects. Proposed face recognition algorithm initially uses 68 points to locate a face in the input image and later partially uses the PCA to extract mean image. Meanwhile, the AdaBoost and the LDA are used to extract face features. In final stage, classic nearest centre classifier is used for face classification. Proposed method outperforms recent state-of-the-art face recognition algorithms by producing high recognition rate and yields much lower error rate for a very challenging situation, such as when only frontal ($0^{\circ}$) face sample is available in gallery and seven poses ($0^{\circ}$, ${\pm}30^{\circ}$, ${\pm}35^{\circ}$, and ${\pm}45^{\circ}$) as a probe on the LFW and the CMU Multi-PIE databases.

Development of a Robot arm capable of recognizing 3-D object using stereo vision

  • Kim, Sungjin;Park, Seungjun;Park, Hongphyo;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.128.6-128
    • /
    • 2001
  • In this paper, we present a methodology of sensing and control for a robot system designed to be capable of grasping an object and moving it to target point Stereo vision system is employed to determine to depth map which represents the distance from the camera. In stereo vision system we have used a center-referenced projection to represent the discrete match space for stereo correspondence. This center-referenced disparity space contains new occlusion points in addition to the match points which we exploit to create a concise representation of correspondence an occlusion. And from the depth map we find the target object´s pose and position in 3-D space. To find the target object´s pose and position, we use the method of the model-based recognition.

  • PDF

Worker Accountability in Computer Vision for Construction Productivity Measurement: A Systematic Review

  • Mik Wanul KHOSIIN;Jacob J. LIN;Chuin-Shan CHEN
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.775-782
    • /
    • 2024
  • This systematic review comprehensively analyzes the application of computer vision in construction productivity measurement and emphasizes the importance of worker accountability in construction sites. It identifies a significant gap in the connection level between input (resources) and output data (products or progress) of productivity monitoring, a factor not adequately addressed in prior research. The review highlights three fundamental groups: input, output, and connection groups. Object detection, tracking, pose, and activity recognition, as the input stage, are essential for identifying characteristics and worker movements. The output phase will mostly focus on progress monitoring, and understanding the interaction of workers with other entities will be discussed in the connection groups. This study offers four research future research directions for the worker accountability monitoring process, such as human-object interaction (HOI), generative AI, location-based management systems (LBMS), and robotic technologies. The successful accountability monitoring will secure the accuracy of productivity measurement and elevate the competitiveness of the construction industry.

DEVELOPMENT OF A MACHINE VISION SYSTEM FOR WEED CONTROL USING PRECISION CHEMICAL APPLICATION

  • Lee, Won-Suk;David C. Slaughter;D.Ken Giles
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.802-811
    • /
    • 1996
  • Farmers need alternatives for weed control due to the desire to reduce chemicals used in farming. However, conventional mechanical cultivation cannot selectively remove weeds located in the seedline between crop plants and there are no selective heribicides for some crop/weed situations. Since hand labor is costly , an automated weed control system could be feasible. A robotic weed control system can also reduce or eliminate the need for chemicals. Currently no such system exists for removing weeds located in the seedline between crop plants. The goal of this project is to build a real-time , machine vision weed control system that can detect crop and weed locations. remove weeds and thin crop plants. In order to accomplish this objective , a real-time robotic system was developed to identify and locate outdoor plants using machine vision technology, pattern recognition techniques, knowledge-based decision theory, and robotics. The prototype weed control system is composed f a real-time computer vision system, a uniform illumination device, and a precision chemical application system. The prototype system is mounted on the UC Davis Robotic Cultivator , which finds the center of the seedline of crop plants. Field tests showed that the robotic spraying system correctly targeted simulated weeds (metal coins of 2.54 cm diameter) with an average error of 0.78 cm and the standard deviation of 0.62cm.

  • PDF

Environment Modeling for Autonomous Welding Robotus

  • Kim, Min-Y.;Cho, Hyung-Suk;Kim, Jae-Hoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.124-132
    • /
    • 2001
  • Autonomous of welding process in shipyard is ultimately necessary., since welding site is spatially enclosed by floors and girders, and therefore welding operators are exposed to hostile working conditions. To solve this problem, a welding robot that can navigate autonomously within the enclosure needs to be developed. To achieve the welding ra나, the robotic welding systems needs a sensor system for the recognition of the working environments and the weld seam tracking, and a specially designed environment recognition strategy. In this paper, a three-dimensional laser vision system is developed based on the optical triangulation technology in order to provide robots with work environmental map. At the same time a strategy for environment recognition for welding mobile robot is proposed in order to recognize the work environment efficiently. The design of the sensor system, the algorithm for sensing the structured environment, and the recognition strategy and tactics for sensing the work environment are described and dis-cussed in detail.

  • PDF

Design of OpenCV based Finger Recognition System using binary processing and histogram graph

  • Baek, Yeong-Tae;Lee, Se-Hoon;Kim, Ji-Seong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.2
    • /
    • pp.17-23
    • /
    • 2016
  • NUI is a motion interface. It uses the body of the user without the use of HID device such as a mouse and keyboard to control the device. In this paper, we use a Pi Camera and sensors connected to it with small embedded board Raspberry Pi. We are using the OpenCV algorithms optimized for image recognition and computer vision compared with traditional HID equipment and to implement a more human-friendly and intuitive interface NUI devices. comparison operation detects motion, it proposed a more advanced motion sensors and recognition systems fused connected to the Raspberry Pi.

Traffic Sign Recognition by the Variant-Compensation and Circular Tracing (변형 보정과 원형 추적법에 의한 교통 표지판 인식)

  • Lee, Woo-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.3
    • /
    • pp.188-194
    • /
    • 2008
  • We propose the new method for the traffic signs recognition that is one of the DAS(Driving assistance system) in the intelligent vehicle. Our approach estimates a varied degree by using a geometric method from the varied traffic signs in noise, rotation and size, and extracts the recognition symbol from the compensated traffic sign for a recognition by using the sequential color-based clustering. This proposed clustering method classify the traffic sign into the attention, regulation, indication, and auxiliary class. Also, The circular tracing method is used for the final traffic sign recognition. To evaluate the effectiveness of the proposed method, varied traffic signs were built. As a result, The proposed method show that the 95 % recognition rate for a single variation, and 93 % recognition rate for a mixed variation.

  • PDF