보행자의 수는 건물의 출입자 제어, 보행자 소통 관리, 지역 내 유동량 측정 등에 있어서 매우 중요하게 이용되는 정보이다. 그러나 기존의 사람 검출 및 계수 시스템은 겹침이나 그림자나 조명에 의한 부정확한 검출로 인하여 정확한 계수의 어려움이 있었다. 본 논문에서는 카메라로부터 영상을 입력받아 적응적으로 배경 영상을 생성하여 처리함으로써 조명의 변화나 그림자 영향을 최소화 하였다. 또한 Kalman 필터와 Mean-Shift 알고리즘을 이용하여 중복 계수를 방지하여 계수의 정확도를 높일 수 있었다. 실험 결과 95.4%의 계수 정확도를 나타내어 제안된 방법이 사람의 검출 및 계수에 효율적임을 증명하였다.
스마트폰의 보급 확산으로 다양한 콘텐츠가 등장하고 있다. 이러한 콘텐츠 중에서 위치 기반 서비스를 이용한 증강현실 응용프로그램의 필요성이 널리 대두되고 있다. 본 논문에서는 안드로이드 스마트폰을 이용한 위치정보기반 AR 시스템에서 발생하는 정합 오차를 컴퓨터 비전 기술을 이용하여 효과적으로 줄이는 방법을 제안한다. 위치정보 오차 누적 때문에 객체가 정확하게 정합되지 않는 부정합 현상 최소화를 위해 연산 속도는 유지하면서 연산량을 줄여 성능을 향상한 방법인 SURF(Speeded Up Robust Features)를 사용해 초기 특징점을 검출하고 검출된 특징점을 추적하여 모바일 환경에 적용한다. 위치정보 검색을 위해 GPS 정보를 사용하고 자세추정 및 방향 정보를 위해 자이로 센서, G-센서 등을 이용한다. 하지만 위치정보의 누적된 오차는 객체가 고정되지 않는 부정합 현상을 유발한다. 또한, 증강현실 기술은 구현하면서 많은 연산량이 필요하므로 모바일 환경에서 구현하는데 어려움이 발생한다. 제안된 방법은 모바일 환경에서 성능 저하를 최소화하고 비교적 간단하게 구현할 수 있어 기존 시스템 및 다양한 모바일 환경에서 유용하게 이용될 수 있다.
In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.
The purpose of this study is to verify the long - range measurement performance for practical field application of VDMS. The reliability of the VDMS was verified by comparison with the existing monitoring sensor, GPS, Accelerometer and LDS. It showed the ability to accurately measure the dynamic displacement by tracking a motion of free vibration of target. And using the PSD function of measured data, the results in the frequency domain were also analyzed. We judged that VDMS is able to identify the higher system mode and has sufficient reliability. Based on the reliability verification, we conducted tests for long-distance applicability for actual application of VDMS. The distance from the stationary target model structure was increased by 50m interval, and the maximum distance was set to 400m. From the distance of 150m, the image obtained by the commercial camcorder has an error in the analysis, so the measured displacement comparison was performed between the LDS and the refractor telescope measurement results. In the measurement results of the displacement area of VDMS, the data validity was deteriorated due to the data shift by the external force and the quality degradation of the enlarged image. However, even under the condition that the effectiveness of the displacement measurement data of VDMS is low, the first mode characteristic included in the free vibration of the object is clearly measured. If the influence from the external environment is controlled and stable data is collected, It is judged that reliability of long-distance VDMS can be secured.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권1호
/
pp.341-363
/
2016
Haze or fog is a common natural phenomenon. In foggy weather, the captured pictures are difficult to be applied to computer vision system, such as road traffic detection, target tracking, etc. Therefore, the image dehazing technique has become a hotspot in the field of image processing. This paper presents an overview of the existing achievements on the image dehazing technique. The intent of this paper is not to review all the relevant works that have appeared in the literature, but rather to focus on two main works, that is, image dehazing scheme based on atmospheric veil and image dehazing scheme based on dark channel prior. After the overview and a comparative study, we propose an improved image dehazing method, which is based on two image dehazing schemes mentioned above. Our image dehazing method can obtain the fog-free images by proposing a more desirable atmospheric veil and estimating atmospheric light more accurately. In addition, we adjust the transmission of the sky regions and conduct tone mapping for the obtained images. Compared with other state of the art algorithms, experiment results show that images recovered by our algorithm are clearer and more natural, especially at distant scene and places where scene depth jumps abruptly.
자기 자신의 형태를 변형하거나 물리적인 결합으로 재구성하여 새로운 환경에 적응하는 모듈형 자가 결합 로봇은 많은 연구가 필요한 분야이다. 본 논문에서는 물리적으로 결합 가능한 모듈형 로봇을 위한 영상기반의 자가 결합 제어기를 제안한다. 먼저 실시간 영상처리가 가능한 모듈형 로봇 플랫폼을 설계하고, 컬러기반 물체 인식 방법을 구현하였다. 모듈형 로봇은 자가 결합을 위해 결합될 로봇 근처의 부목표점까지 장애물들을 회피하면서 주행해 가야 한다. 본 논문에서는 부 목표점의 추적을 위하여 영상처리를 통해 얻은 거리와 방향각 정보들을 사용한 퍼지 주행 제어기와 장애물 회피를 위한 퍼지 제어기를 제안하고, 제안된 퍼지 제어기들과 로봇의 절대 거리 및 방향각 정보를 사용하여 모듈형 로봇을 위한 자가 결합제어기를 구현하였다. 실제 제작된 두 대의 모듈형 로봇을 사용하여 다양한 환경에서 로봇간 거리와 방향각이 다른 상황에서 실험을 수행하여 제안된 자가 결합 제어 방법의 성능을 검증하였다.
카메라를 통한 객체의 움직임 검출은 불필요한 잡음이나 조명의 변화에 따라 정확한 움직임을 검출하는 것은 어렵다. 또한 객체의 유입 후 일정시간 동안 움직임이 없을 경우에는 배경으로 인식될 수도 있다. 따라서 실시간으로 입력되는 영상에서 정확한 객체를 추출하고 움직임을 검출할 수 있는 알고리즘이 필요하다. 본 논문에서는 객체의 정확한 움직임을 검출하기 위한 방법은 시간에 따라 변화하는 배경영상의 일부를 교체하고, 객체가 유입된 시점에서 객체의 영역을 추출하기 위하여 그물형 픽셀검사를 통하여 객체의 윤곽점을 추출한다. 추출된 윤곽점은 객체의 사각영역인 최소블록의 생성과 객체의 움직임을 빠르게 검출하기 위한 가변 탐색블록을 생성하여 정확한 객체의 움직임을 검출한다. 설계하고 구현한 시스템은 실험을 통한 성능평가에서 95% 이상의 높은 정확도를 보였다.
본 논문에서는 키넥트센서(Kinect sensor)와 확장칼만필터(Extended Kalman Filter : EKF)를 이용하여 사람과 로봇간의 상대위치 및 각도와 상대속도를 실시간으로 추정하는 알고리즘을 제안한다. 또한, 다양한 이동모드에 따른 모바일로봇의 사람과의 근접동반이동 제어를 수행한다. HOG 및 SVM을 이용한 사람 두부 및 어깨 검출 알고리즘을 통해 사람을 검출하고, 키넥트센서의 정보를 이용해 EKF 알고리즘을 거쳐 사람과 로봇간의 상대위치 및 속도를 추정한다. EKF 알고리즘의 결과를 이용해 실내 환경에서 사람과 같이 근접동반주행을 하기 위한 다양한 모드의 제어 실험을 수행한다. 또한, 모션캡처장비(VICON)를 이용해 알고리즘의 정확도를 검증하였다.
무인지상차량을 통해 수직이착륙 무인항공기의 운반, 발사, 귀환 및 재충전 기능을 제공함으로서 두 체계의 단점을 보완할 수 있는 무인항공기-무인지상차량 합동운용 개념이 제시되었다. 합동운용 개념은 두 체계의 물리적 결합을 통해 무인지상차량의 감시정찰 범위를 확대하고, 수직이착륙 무인항공기의 운용능력을 확장할 수 있는 개념이다. 체계간의 유연하고 정확한 인터페이스를 제공하기 위해 구형 동체를 가지는 동축반전 회전익형 무인항공기의 형상이 제안되었다. 무인항공기의 정밀착륙을 위해 영상기반 목표추적 기법이 포함된 복합항법 기술이 검토되었고, 실험적 연구가 수행되었다. 또한, 탑재된 회전익형 비행체에 콤팩트한 형상을 제공하기 위한 길이-가변 로터의 구현 가능성에 대해서도 기술하였다.
일반적으로, 컴퓨터 비전, 로보틱스, 증강현실 분야에서 3차원 공간 및 3차원 객체 검출 및 인식기술의 중요성이 대두되고 있다. 특히, 마이크로소프트사의 키넥트(Microsoft Kinect) 방식을 사용하는 영상 센서를 통하여 RGB 영상과 깊이 영상을 실시간 획득하는 것이 가능해짐으로 인하여 객체 검출, 추적 및 인식 연구에 많은 변화를 가져오고 있다. 본 논문에서는 다시점 카메라 시스템 상에서의 깊이 기반(RGB-Depth) 카메라를 통해 획득된 영상을 처리하여 3D 복원 영상의 품질을 향상하는 방법을 제안한다. 본 논문에서는 컬러 영상으로부터 획득한 마스크 적용을 통해 객체 바깥쪽 잡음을 제거하는 방법과 객체 안쪽의 픽셀 간 깊이 정보 차이를 구하는 필터링 연산을 결합하여 적용하는 방법을 제시하였다. 각 실험 결과를 통해 제시한 방법이 효과적으로 잡음을 제거하여 3D 복원 영상의 품질을 향상할 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.