• 제목/요약/키워드: vision tracking system

검색결과 437건 처리시간 0.021초

Automatic Person Identification using Multiple Cues

  • Swangpol, Danuwat;Chalidabhongse, Thanarat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1202-1205
    • /
    • 2005
  • This paper describes a method for vision-based person identification that can detect, track, and recognize person from video using multiple cues: height and dressing colors. The method does not require constrained target's pose or fully frontal face image to identify the person. First, the system, which is connected to a pan-tilt-zoom camera, detects target using motion detection and human cardboard model. The system keeps tracking the moving target while it is trying to identify whether it is a human and identify who it is among the registered persons in the database. To segment the moving target from the background scene, we employ a version of background subtraction technique and some spatial filtering. Once the target is segmented, we then align the target with the generic human cardboard model to verify whether the detected target is a human. If the target is identified as a human, the card board model is also used to segment the body parts to obtain some salient features such as head, torso, and legs. The whole body silhouette is also analyzed to obtain the target's shape information such as height and slimness. We then use these multiple cues (at present, we uses shirt color, trousers color, and body height) to recognize the target using a supervised self-organization process. We preliminary tested the system on a set of 5 subjects with multiple clothes. The recognition rate is 100% if the person is wearing the clothes that were learned before. In case a person wears new dresses the system fail to identify. This means height is not enough to classify persons. We plan to extend the work by adding more cues such as skin color, and face recognition by utilizing the zoom capability of the camera to obtain high resolution view of face; then, evaluate the system with more subjects.

  • PDF

스테레오 카메라 기반의 적응적인 공간좌표 검출 기법을 이용한 자율 이동로봇 시스템 (Autonomous Mobile Robot System Using Adaptive Spatial Coordinates Detection Scheme based on Stereo Camera)

  • 고정환;김성일;김은수
    • 한국통신학회논문지
    • /
    • 제31권1C호
    • /
    • pp.26-35
    • /
    • 2006
  • 본 논문에서는 지능적인 경로 계획을 위한 스테레오 카메라 기반의 공간좌표 검출 기법을 이용한 자율 이동 로봇 시스템을 제안하였다. 우선 스테레오 카메라로부터 입력된 영상 중 좌 영상에 YCbCr 컬러 모델 및 무게 중심법을 이용하여 이동중인 보행자의 얼굴 영역과 중심좌표를 검출하고, 검출된 좌표 값에 따라 스테레오 카메라의 능동적인 로봇 제어를 통해 이동하는 보행자를 실시간적으로 검출하게 된다. 다음으로, 로봇구동에 의해 추적 제어된 스테레오 카메라의 좌, 우 영상간의 시차정보와 스테레오 카메라 내부 변환관계를 통해 깊이 정보를 검출한 후, 검출된 깊이 지도로부터 각 열에 존재하는 최소값을 이용한 2차원 공간좌표를 검출하여 이동 로봇과 보행자간의 거리와 위치좌표는 물론 다른 물체들과의 상대 거리를 산출하게 되며, 산출된 위치 좌표를 토대로 이동 로봇의 지능적인 경로 추정 및 판단에 따라 자율적인 주행을 수행하게 된다. 실시간적으로 입력되는 240 프레임의 스테레오 영상을 사용한 실험결과, 이동 로봇과 전방에 존재하는 장애물간의 거리 및 보행자와 장애물간 상대거리의 계산치와 측정치간의 오차가 평균 $2.19\%$$1.52\%$이하로 각각 유지됨으로써 경로 계획을 위한 공간좌표 검출에 기반을 둔 실질적인 이동 로봇 시스템의 구현 가능성을 제시하였다.

GRNN을 이용한 실시간 시선 식별 시스템에 관한 연구 (A Study on Real Time Gaze Discrimination System using GRNN)

  • 이영식;배철수
    • 한국정보통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.322-329
    • /
    • 2005
  • 본 논문에서는 실시간 시선 식별을 위한 능동적 적외선 조명을 기반으로 한 컴퓨터 비전 시스템을 제안하고자 한다. 현존하는 대다수의 시선 식별 방법은 고정된 얼굴에서만 원활하게 동작하고 개개인에 대한 교정 절차를 필요로 한다. 그러므로 본 논문에서는 교정 작업 없이 얼굴 움직임이 있는 경우에도 견실하고 정화하게 동작하는 시선 식별 시스템을 제안하고 있다. 제안된 시스템은 추출된 변수로부터 시선을 스크린 좌표로 매핑하기 위해 GRNN을 이용하였다. GRNN을 사용함으로서, 시선 매핑에 분석적 기능이나 얼굴 움직임에 대한 계산이 필요 없을 뿐 아니라 다른 개개인에 대하여 학습과정에서 매핑 기능을 일반화 할 수 있었다. 시선 예측 정확도를 개선하고자 계층적 식별을 제안함으로써 오분류를 줄일 수 있었고, 공간 시선 해상도는 스크린에서 Im 정도 떨어진 거리에서 수평으로 10cm, 수직으로 약 13cm, 즉 수평으로 8도 수직으로 5도 이었다 실험 결과, 재식별 하였을 경우 1차 시선 식별시 84$\%$보다 약 9$\%$ 정도 정확성이 향상되어 93%를 나타냄으로써 제안된 시스템의 유효성을 증명하였다.

모바일 증강현실 물체와 몰입형 상호작용을 위한 비전기반 동작제어 (Vision-based Motion Control for the Immersive Interaction with a Mobile Augmented Reality Object)

  • 전준철
    • 인터넷정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.119-129
    • /
    • 2011
  • 비전기반 인간컴퓨터 상호작용은 컴퓨터와 인간의 상호소통을 자연스럽게 제공하는 측면에서 과학과 산업분야에서 주목받는 연구 분야이다. 특히 최근 모바일 증강현실의 활용에 대한 수요증대는 증강된 가상 객체와 사용자간의 효과적인 상호작용 기술 개발을 요구하고 있다. 본 논문에서는 안드로이드기반 모바일 플랫폼에서 비 마커기반의 새로운 모바일 증강현실 객체생성 및 제어 방법을 제시하였다. 전통적인 마커를 대신하여 비 마커기반 모바일 증강현실 시스템에서는 사용자에게 친숙한 손 인터페이스를 이용하였다. 기존의 데스크 탑 기반의 증강현실에 비하여 제한된 시스템 사양을 이용하는 비 마커기반 모바일 증강현실을 구현하기 위하여 마커의 역할을 수행할 손의 최적영역을 모바일 장치의 카메라로부터 실시간으로 검출 하여 객체를 증강시키는 방법을 제시하였다. 손의 최적영역의 추출은 YCbCr 스킨컬러 모델을 이용한 손영역 검출과 Rotating Calipers 알고리즘을 적용한 최적 사각형 추출에 의해 구현하였다. 이때 추출된 최적 사각형은 통상적인 마커기반 증강현실에서의 마커역할을 수행할 수 있도록 하였으며, 기존의 손끝추적에 의한 마커 생성 시 발생하는 손의 회전이나 가려짐에 의한 문제를 해결하였다. 실험을 통하여 제안된 방법이 비 마커기반 모바일 객체를 효과적으로 생성 제어할 수 있음을 입증하였다.

3차원 손 모델링 기반의 실시간 손 포즈 추적 및 손가락 동작 인식 (Real-Time Hand Pose Tracking and Finger Action Recognition Based on 3D Hand Modeling)

  • 석흥일;이지홍;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권12호
    • /
    • pp.780-788
    • /
    • 2008
  • 손 포즈 모델링 및 추적은 컴퓨터 시각 분야에서 어려운 문제로 알려져 있다. 손 포즈 3차원 복원을 위한 방법에는 사용되는 카메라의 수에 따라 다중 카메라 또는 스테레오 카메라 기반 방식과 단일카메라 기반 방식이 있다. 다중 카메라의 경우 여러 대의 카메라를 설치하거나 동기화를 시키는 등에 대한 제약사항이 따른다. 본 논문에서는 확률 그래프 모델에서 신뢰 전파 (Belief Propagation) 알고리즘을 이용하여 단안 카메라에서 획득된 2차원 입력 영상으로부터 3차원 손 포즈를 추정하는 방법을 제안한다. 또한, 은닉 마르코프 모델(Hidden Markov Model)을 인식기로 하여 손가락 클릭 동작을 인식한다. 은닉 노드로 손가락의 관절 정보를 표현하고, 2차원 입력 영상에서 추출된 특징을 관측 노드로 표현한 확률 그래프 모델을 정의한다. 3차원 손 포즈 추적을 위해 그래프 모델에서의 신뢰 전파 알고리즘을 이용한다. 신뢰 전파 알고리즘을 통해 3차원 손 포즈를 추정 및 복원하고, 복원된 포즈로부터 손가락의 움직임에 대한 특징을 추출한다. 추출된 정보는 은닉 마르코프 모델의 입력값이 된다. 손가락의 자연스러운 동작을 위해 본 논문에서는 한 손가락의 클릭 동작 인식에 여러 손가락의 움직임을 함께 고려한다. 제안한 방법을 가상 키패드 시스템에 적응한 결과 300개의 동영상 테스트 데이타에 대해 94.66%의 높은 인식률을 보였다.

휴먼 컴퓨터 인터페이스를 위한 실시간 시선 식별 (Real Time Gaze Discrimination for Human Computer Interaction)

  • 박호식;배철수
    • 한국통신학회논문지
    • /
    • 제30권3C호
    • /
    • pp.125-132
    • /
    • 2005
  • 본 논문에서는 실시간 시선 식별을 위한 능동적 적외선 조명을 기반으로 한 컴퓨터 비전 시스템을 제안하고자 한다. 현존하는 대다수의 시선 식별 방법은 고정된 얼굴에서만 원활하게 동작하고 개개인에 대한 교정 절차를 필요로 한다. 그러므로 본 논문에서는 교정 작업 없이 얼굴 움직임이 있는 경우에도 견실하고 정확하게 동작하는 시선 식별 시스템을 제안하고 있다. 제안된 시스템은 추출된 변수로부터 시선을 스크린 좌표로 매핑하기 위해 GRNN을 이용하였다. 동공을 추적하여 GRNN을 사용함으로서, 시선 매핑에 분석적 기능이나 얼굴 움직임에 대한 계산이 필요 없을 뿐 아니라 다른 개개인에 대하여 학습과정에서 매핑 기능을 일반화 할 수 있었다. 시선 예측 정확도를 개선하고자 계층적 식별을 제안함으로써 오분류를 줄일 수 있었고, 공간 시선 해상도는 스크린에서 1m 정도 떨어진 거리에서 수평으로 10cm, 수직으로 약 13cm, 즉 수평으로 8도 수직으로 5도 이었다. 실험 결과, 재식별 하였을 경우 1차 시선 식별시 84%보다 약 9% 정도 정확성이 향상되어 93%를 나타냄으로써 제안된 시스템의 유효성을 증명하였다.

컴퓨터 인터페이스를 위한 실시간 시선 식별 (Real Time Gaze Discrimination for Computer Interface)

  • 황선기;김문환
    • 한국정보전자통신기술학회논문지
    • /
    • 제3권1호
    • /
    • pp.38-46
    • /
    • 2010
  • 본 논문에서는 실시간 시선 식별을 위한 능동적 적외선 조명을 기반으로 한 컴퓨터 비전 시스템을 제안 하고자 한다. 현존하는 대다수의 시선 식별 방법은 고정된 얼굴에서만 원활하게 동작하고 개개인에 대한 교정 절차를 필요로 한다. 그러므로 본 논문에서는 교정 작업 없이 얼굴 움직임이 있는 경우에도 견실하고 정확하게 동작하는 시선 식별 시스템을 제안하고 있다. 제안된 시스템은 추출된 변수로부터 시선을 스크린 좌표로 매핑하기 위해 GRNN을 이용하였다. 동공을 추적하여 GRNN을 사용함으로서, 시선 매핑에 분석적 기능이나 얼굴 움직임에 대한 계산이 필요 없을 뿐 아니라 다른 개개인에 대하여 학습과정에서 매핑 기능을 일반화 할 수 있었다. 시선 예측 정확도를 개선하고자 계층적 식별을 제안함으로써 오분류를 줄일 수 있었고, 공간 시선 해상도는 스크린에서 1m 정도 떨어진 거리에서 수평으로 10cm, 수직으로 약 13cm, 즉 수평으로 8도 수직으로 5도 이었다. 실험 결과, 재식별 하였을 경우 1차 시선 식별시 84%보다 약 9% 정도 정확성이 향상되어 93%를 나타냄으로써 제안된 시스템의 유효성을 증명하였다.

  • PDF

딥러닝 알고리즘 기반 교통법규 위반 공익신고 영상 분석 시스템 (Analysis System for Public Interest Report Video of Traffic Law Violation based on Deep Learning Algorithms)

  • 최민성;문미경
    • 한국전자통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.63-70
    • /
    • 2023
  • 고화질 블랙박스의 확산과 '스마트 국민제보', '안전신문고' 등 모바일 애플리케이션의 도입에 따른 영향으로 교통법규 위반 공익신고가 급증하였으며, 이로 인해 이를 처리할 담당 경찰 인력은 부족한 상황이 되었다. 본 논문에서는 교통법규 위반 공익신고 영상 중, 가장 많은 비중을 차지하는 차선위반에 대해 딥러닝 알고리즘을 활용하여 자동 검출할 수 있는 시스템의 개발내용에 관해 기술한다. 본 연구에서는 YOLO 모델과 Lanenet 모델을 사용하여 차량과 실선 객체를 인식하고 deep sort 알고리즘을 사용하여 객체를 개별로 추적하는 방법, 그리고 차량 객체의 바운딩 박스와 실선 객체의 범위가 겹치는 부분을 인식하여 진로변경 위반을 검출하는 방법을 제안한다. 본 시스템을 통해 신고된 영상에 대해 교통법규 위반 여부를 자동 분석해줌으로써 담당 경찰 인력 부족난을 해소할 수 있을 것으로 기대한다.

스테레오 비전 시스템에서 차 영상을 이용한 이동 물체의 거리와 속도측정 ((Distance and Speed Measurements of Moving Object Using Difference Image in Stereo Vision System))

  • 허상민;조미령;이상훈;강준길;전형준
    • 한국컴퓨터산업학회논문지
    • /
    • 제3권9호
    • /
    • pp.1145-1156
    • /
    • 2002
  • 스테레오 비전 시스템을 이용하여 이동 물체의 거리와 속도를 측정하기 위한 방법을 제안하였다. 이동 물체의 거리와 속도 측정에 있어서 가장 중요한 요소 중 하나는 물체 추적의 정확성이다. 따라서 빠르게 움직이는 물체 추적을 위해 배경 영상 기법을 이용하였고, 물체의 그림자와 잡음을 제거하기 위해 지역 Opening 연산을 이용하였다. 적응형 임계치를 적용하여 자기 변화에 상관없이 이동 물체의 추출 효율을 높이도록 하였다. 좌, 우 중심점 위치를 보정하여 더 정확한 물체의 속도와 거리를 측정할 수 있도록 하였다. 배경 영상 기법과 지역 Opening 연산을 사용하여 계산 과정을 줄임으로써 이동 물체의 거리와 속도의 실시간 처리가 가능하도록 하였다. 실험 결과, 배경 영상 기법은 다른 알고리즘과는 달리 빠르게 움직이는 물체를 추적할 수 있음을 보여준다. 적응형 임계치를 적용하여 후보 영역을 줄임으로써 목표물 추출 효율이 개선되었다. 양안 시차를 이용하여 목표물의 중심점을 보정함으로써 거리와 속도 측정 오차가 감소하였다. 스테레오 카메라에서부터 이동 물체까지의 거리 측정 오차율은 2.68%, 이동 물체의 속도 측정 오차율은 3.32%로 본 시스템의 향상된 효율성을 나타냈다.

  • PDF

카메라-라이다 융합 모델의 오류 유발을 위한 스케일링 공격 방법 (Scaling Attack Method for Misalignment Error of Camera-LiDAR Calibration Model)

  • 임이지;최대선
    • 정보보호학회논문지
    • /
    • 제33권6호
    • /
    • pp.1099-1110
    • /
    • 2023
  • 자율주행 및 robot navigation의 인식 시스템은 성능 향상을 위해 다중 센서를 융합(Multi-Sensor Fusion)을 한 후, 객체 인식 및 추적, 차선 감지 등의 비전 작업을 한다. 현재 카메라와 라이다 센서의 융합을 기반으로 한 딥러닝 모델에 대한 연구가 활발히 이루어지고 있다. 그러나 딥러닝 모델은 입력 데이터의 변조를 통한 적대적 공격에 취약하다. 기존의 다중 센서 기반 자율주행 인식 시스템에 대한 공격은 객체 인식 모델의 신뢰 점수를 낮춰 장애물 오검출을 유도하는 데에 초점이 맞춰져 있다. 그러나 타겟 모델에만 공격이 가능하다는 한계가 있다. 센서 융합단계에 대한 공격의 경우 융합 이후의 비전 작업에 대한 오류를 연쇄적으로 유발할 수 있으며, 이러한 위험성에 대한 고려가 필요하다. 또한 시각적으로 판단하기 어려운 라이다의 포인트 클라우드 데이터에 대한 공격을 진행하여 공격 여부를 판단하기 어렵도록 한다. 본 연구에서는 이미지 스케일링 기반 카메라-라이다 융합 모델(camera-LiDAR calibration model)인 LCCNet 의 정확도를 저하시키는 공격 방법을 제안한다. 제안 방법은 입력 라이다의 포인트에 스케일링 공격을 하고자 한다. 스케일링 알고리즘과 크기별 공격 성능 실험을 진행한 결과 평균 77% 이상의 융합 오류를 유발하였다.