• 제목/요약/키워드: vision AI

검색결과 154건 처리시간 0.024초

Passive Ranging Based on Planar Homography in a Monocular Vision System

  • Wu, Xin-mei;Guan, Fang-li;Xu, Ai-jun
    • Journal of Information Processing Systems
    • /
    • 제16권1호
    • /
    • pp.155-170
    • /
    • 2020
  • Passive ranging is a critical part of machine vision measurement. Most of passive ranging methods based on machine vision use binocular technology which need strict hardware conditions and lack of universality. To measure the distance of an object placed on horizontal plane, we present a passive ranging method based on monocular vision system by smartphone. Experimental results show that given the same abscissas, the ordinatesis of the image points linearly related to their actual imaging angles. According to this principle, we first establish a depth extraction model by assuming a linear function and substituting the actual imaging angles and ordinates of the special conjugate points into the linear function. The vertical distance of the target object to the optical axis is then calculated according to imaging principle of camera, and the passive ranging can be derived by depth and vertical distance to the optical axis of target object. Experimental results show that ranging by this method has a higher accuracy compare with others based on binocular vision system. The mean relative error of the depth measurement is 0.937% when the distance is within 3 m. When it is 3-10 m, the mean relative error is 1.71%. Compared with other methods based on monocular vision system, the method does not need to calibrate before ranging and avoids the error caused by data fitting.

AI 비전과 생성형 AI 를 이용한 멀티 홈 디바이스 제어 (Control of Multi-Home Devices Using AI Vision and Generative AI)

  • 홍수민;김수민;송수희;안채연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.1037-1038
    • /
    • 2023
  • 기술의 발전으로 인해 스마트 가전제품이 늘어나며 스마트 홈 기술이 주목을 받고 있다. 그러나 이러한 기술은 설정과정의 복잡성으로 사용자들이 쉽게 접근하기 어렵다. 특히 디지털 기기 사용에 익숙하지 않은 사용자들을 스마트 홈 기술로부터 소외시키는 결과를 낳고 있다. 본 논문에서는 사용자 친화적인 스마트 홈 시스템을 제안한다. 사용자의 시선 방향을 추적하여 디바이스를 선택하고 간단한 인터페이스의 컨트롤러로 디바이스를 손쉽게 조작할 수 있도록 한다. 또한, 생성형 인공지능과 RAG 를 결합하여 사용자가 가전제품과 자연스럽게 대화하며 정보를 얻을 수 있는 인터페이스를 제공한다.

협동로봇 동작 오류 진단을 통한 비전 기반 조인트 결함 추적 기법 (Vision-based Joint Defect Tracking by Motion Fault Diagnosis of Collaborative Robots)

  • 양희찬;김진세;유동연;이정원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.595-596
    • /
    • 2023
  • 스마트팩토리의 핵심 설비 기기인 협동로봇의 유지보수를 위해 다양한 센서 데이터를 활용한 딥러닝 기반 결함 진단 연구가 확대되고 있다. 하지만 협동로봇은 기계적 특성과 수행하는 작업의 다양성으로 인해 내부 센서 데이터의 복잡도가 매우 높아 고정적인 결함 진단 기법을 적용하기 어렵다. 따라서 본 논문은 협동로봇의 동작 패턴을 직관적이고 신속하게 인지할 수 있는 비전 기술을 활용하여, 동작 오류 진단을 기반으로 원인이 되는 조인트 결함 위치를 추적하는 딥러닝 기법을 제안한다.

Imagination into Reality - Artificial Intelligence (AI) Marketing Changes

  • Rhie, Jin-Hee
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권12호
    • /
    • pp.183-189
    • /
    • 2019
  • 4차 산업혁명 이후 인공지능을 활용한 사업이 IT업계를 중심으로 확대되고 있으며 AI 서비스의 질적인 향상이 기대된다. 본 연구에서는 AI의 개발과 발전을 통해 마케팅의 변화를 살펴보고 앞으로의 시장변화에 대응할 수 있는 마케팅 전략을 수립하고 적용할 수 있도록 하는데 목적이 있다. 기존 자료를 토대로 인공지능 기술의 발전을 살펴보고 해외와 우리나라의 적용 사례를 통해 마케팅의 변화와 대응전략에 대해 살펴보았다. 인공지능(AI) 기술은 우리 생활에 있어 밀접한 영향을 주며 우리의 생활을 변화시키고 그에 따라 소비패턴과 인식, 소비문화까지 바꿀 수 있는 영향을 끼치고 있다. 앞으로 인공지능 기술의 혁신적 변화에 정부의 정책과 기업의 비전, 보다 장기적인 성공전략을 수립하는 적극적인 대비책이 필요하며, 기업과 산업 간의 협업이 중요하다.

적대적 생성 신경망 기반 비공기압 타이어 디자인 시스템 (Non-pneumatic Tire Design System based on Generative Adversarial Networks)

  • 성주용;이현준;이성철
    • Journal of Platform Technology
    • /
    • 제11권6호
    • /
    • pp.34-46
    • /
    • 2023
  • 자동차 타이어의 휠과 트레드 사이에 탄성중합체 또는 다각형의 스포크를 채우는 방식으로 제작하는 비공기압 타이어는 자동차 관련 학계 및 항공우주 업계의 중요한 연구 주제가 되고 있다. 본 연구에서는 생성형 적대 신경망을 기반으로 비공기압 타이어 디자인을 생성하는 시스템 개발했다. 특히 비공기압 타이어의 종류와 사용 환경, 제작 방식, 공기압 타이어와의 차이점 그리고 스포크 디자인에 따른 하중 전달의 변화 등 디자인에 영향을 미칠만한 변수들에 대한 조사를 실시했다. 이 연구는 OpenCV를 통해 다양한 스포크 형태의 이미지를 만들고, projected GANs에 학습시켜 비공기압 타이어 디자인에 사용될 스포크를 생성했다. 디자인된 비공기압 타이어는 사용 가능 및 불가능으로 레이블링하고, 이를 Vision Transformer 이미지 분류 AI 모델에 학습시켜 분류하도록 하였다. 최종적으로 분류 모델의 평가를 통해 0에 가까운 loss의 수렴, 99%의 정확도를 확인했다. 차후 도형 및 스포크 이미지와 알고리즘을 이용한 디자인이 아닌, 완전 자동화 시스템의 개발과 더 나아가 3D의 물리적 해석 없이 사용 가능한 디자인을 생성하는 것을 목표로 한다.

  • PDF

리테일 마케팅 고도화를 위한 CCTV 영상 데이터 기반의 AI 융합 응용 서비스 활용 모델 연구 (A Study on the Application Model of AI Convergence Services Using CCTV Video for the Advancement of Retail Marketing)

  • 김종율;김혁중
    • 디지털융복합연구
    • /
    • 제19권5호
    • /
    • pp.197-205
    • /
    • 2021
  • 최근 리테일 산업계에서는 COVID-19 등의 다양한 외부 환경 위협으로부터의 대응과 AI 기술을 활용한 경쟁력을 갖추기 위한 정보기술 융합 및 활용 요구가 증가하고 있으나 리테일 산업에서의 데이터를 활용하기 위한 연구와 응용 서비스의 활용사례가 매우 부족하다. 본 연구는 CCTV 영상 데이터 기반의 AI 활용 응용 서비스 활용 사례연구로 리테일 공간에서의 CCTV 영상 데이터 수집, 객체 탐지 및 추적 AI 모델 활용, 실시간 추적된 객체와 트래킹 데이터를 저장하기 위한 시계열 데이터베이스 활용, 시계열 데이터를 활용한 모니터링, 리테일 공간의 혼잡도와 관심도를 분석하기 위한 히트맵, 리테일 공간에서의 실시간 상황 모니터링, COVID-19와 같은 사회적 위협으로부터의 접촉자 분석과 추적을 위한 사회적 거리 두기 현황, 비인가자의 보안 구역의 접근 모니터링 애플리케이션을 설계하고 이를 실제 구현하여 리테일 공간에서의 CCTV 영상 데이터를 활용한 애플리케이션 설계를 통해 CCTV 영상 데이터 기반의 AI 융합 응용 서비스 활용 모델을 제시하였으며, 실제 구현을 통해 설계된 활용 모델을 검증하였다.

인공지능 프로세서 기술 동향 (AI Processor Technology Trends)

  • 권영수
    • 전자통신동향분석
    • /
    • 제33권5호
    • /
    • pp.121-134
    • /
    • 2018
  • The Von Neumann based architecture of the modern computer has dominated the computing industry for the past 50 years, sparking the digital revolution and propelling us into today's information age. Recent research focus and market trends have shown significant effort toward the advancement and application of artificial intelligence technologies. Although artificial intelligence has been studied for decades since the Turing machine was first introduced, the field has recently emerged into the spotlight thanks to remarkable milestones such as AlexNet-CNN and Alpha-Go, whose neural-network based deep learning methods have achieved a ground-breaking performance superior to existing recognition, classification, and decision algorithms. Unprecedented results in a wide variety of applications (drones, autonomous driving, robots, stock markets, computer vision, voice, and so on) have signaled the beginning of a golden age for artificial intelligence after 40 years of relative dormancy. Algorithmic research continues to progress at a breath-taking pace as evidenced by the rate of new neural networks being announced. However, traditional Von Neumann based architectures have proven to be inadequate in terms of computation power, and inherently inefficient in their processing of vastly parallel computations, which is a characteristic of deep neural networks. Consequently, global conglomerates such as Intel, Huawei, and Google, as well as large domestic corporations and fabless companies are developing dedicated semiconductor chips customized for artificial intelligence computations. The AI Processor Research Laboratory at ETRI is focusing on the research and development of super low-power AI processor chips. In this article, we present the current trends in computation platform, parallel processing, AI processor, and super-threaded AI processor research being conducted at ETRI.

Transformer를 활용한 인공신경망의 경량화 알고리즘 및 하드웨어 가속 기술 동향 (Trends in Lightweight Neural Network Algorithms and Hardware Acceleration Technologies for Transformer-based Deep Neural Networks)

  • 김혜지;여준기
    • 전자통신동향분석
    • /
    • 제38권5호
    • /
    • pp.12-22
    • /
    • 2023
  • The development of neural networks is evolving towards the adoption of transformer structures with attention modules. Hence, active research focused on extending the concept of lightweight neural network algorithms and hardware acceleration is being conducted for the transition from conventional convolutional neural networks to transformer-based networks. We present a survey of state-of-the-art research on lightweight neural network algorithms and hardware architectures to reduce memory usage and accelerate both inference and training. To describe the corresponding trends, we review recent studies on token pruning, quantization, and architecture tuning for the vision transformer. In addition, we present a hardware architecture that incorporates lightweight algorithms into artificial intelligence processors to accelerate processing.

인공지능 공간상의 다중객체 구분을 위한 컬러 패턴 인식과 추적 (Color Pattern Recognition and Tracking for Multi-Object Tracking in Artificial Intelligence Space)

  • 진태석
    • 한국산업융합학회 논문집
    • /
    • 제27권2_2호
    • /
    • pp.319-324
    • /
    • 2024
  • In this paper, the Artificial Intelligence Space(AI-Space) for human-robot interface is presented, which can enable human-computer interfacing, networked camera conferencing, industrial monitoring, service and training applications. We present a method for representing, tracking, and objects(human, robot, chair) following by fusing distributed multiple vision systems in AI-Space. The article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguous conditions. We propose to track the moving objects(human, robot, chair) by generating hypotheses not in the image plane but on the top-view reconstruction of the scene.

인공지능을 이용한 3D 콘텐츠 기술 동향 및 향후 전망 (Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology)

  • 이승욱;황본우;임성재;윤승욱;김태준;김기남;김대희;박창준
    • 전자통신동향분석
    • /
    • 제34권4호
    • /
    • pp.15-22
    • /
    • 2019
  • Recent technological advances in three-dimensional (3D) sensing devices and machine learning such as deep leaning has enabled data-driven 3D applications. Research on artificial intelligence has developed for the past few years and 3D deep learning has been introduced. This is the result of the availability of high-quality big data, increases in computing power, and development of new algorithms; before the introduction of 3D deep leaning, the main targets for deep learning were one-dimensional (1D) audio files and two-dimensional (2D) images. The research field of deep leaning has extended from discriminative models such as classification/segmentation/reconstruction models to generative models such as those including style transfer and generation of non-existing data. Unlike 2D learning, it is not easy to acquire 3D learning data. Although low-cost 3D data acquisition sensors have become increasingly popular owing to advances in 3D vision technology, the generation/acquisition of 3D data is still very difficult. Even if 3D data can be acquired, post-processing remains a significant problem. Moreover, it is not easy to directly apply existing network models such as convolution networks owing to the various ways in which 3D data is represented. In this paper, we summarize technological trends in AI-based 3D content generation.