• 제목/요약/키워드: viscous displacement range

검색결과 8건 처리시간 0.026초

연약지반 성토시의 기울기변화를 이용한 안정관리기법에 관한 실험적 연구 (A Experimental Study on the Stability Management Method using change of Inclination for Embankment on Soft Clay)

  • 류지훈;임종철;장지건
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.898-905
    • /
    • 2005
  • The settlement of embankment on soft clay includes shear settlement due to shear deformation. Even though the consolidation settlement is not related to lateral displacement, but shear settlement makes the embankment unstable because it deforms ground and decreases the ground strength. In order to determine the shear deformation behaviour during embankment construction, 3 cases (1B, 2B, and 3B) of rapid undrained loading tests on soft clays were performed. Shear settlement is consist of elastic settlement, plastic settlement and viscous settlement. Elastic settlement isn't considered because the range is small, therefore the first is the range of plastic displacement, and the second is that of viscous displacement in the displacement-time curve for each loading stage. After determining that the change in the inclination of the viscous displacement range is larger than in the plastic displacement range after the ground failure occurs for the loading stage, the stability management methods were suggested considering that it is hard to divide the plastic displacement range and the viscous displacement range. The stability management method was based on the ratio of the plastic displacement range's inclination and the viscous displacement range's inclination. A stability management method based on the ratio of the total inclination for each loading stage compared to the whole inclination in the initial loading stage was also recommended.

  • PDF

Direct displacement-based design accuracy prediction for single-column RC bridge bents

  • Tecchio, Giovanni;Dona, Marco;Modena, Claudio
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.455-480
    • /
    • 2015
  • In the last decade, displacement-based (DB) methods have become established design procedures for reinforced concrete (RC) structures. They use strain and displacement measures as seismic performance control parameters. As for other simplified seismic design methods, it is of great interest to prove if they are usually conservative in respect to more refined, nonlinear, time history analyses, and can estimate design parameters with acceptable accuracy. In this paper, the current Direct Displacement-Based Design (DDBD) procedure is evaluated for designing simple single degree of freedom (SDOF) systems with specific reference to simply supported RC bridge piers. Using different formulations proposed in literature for the equivalent viscous damping and spectrum reduction factor, a parametric study is carried out on a comprehensive set of SDOF systems, and an average error chart of the method is derived allowing prediction of the expected error for an ample range of design cases. Following the chart, it can be observed that, for the design of actual RC bridge piers, underestimation errors of the DDBD method are very low, while the overestimation range of the simplified displacement-based procedure is strongly dependent on design ductility.

Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

  • Lee, Kyoung-Rok;Koo, Weoncheol;Kim, Moo-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.513-528
    • /
    • 2013
  • A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

FPS로 면진된 원전 주제어실의 내진 성능 평가 (Seismic Performance Evaluation for MCR of Nuclear Power Plant Isolated by FPS)

  • 김대곤;김우범;서용표;문대식;김종엽
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.453-460
    • /
    • 2003
  • The objective of this study is to investigate the seismic performance for a seismically isolated main control room (MCR) of nuclear power plant. MCR was isolated by spherically shaped friction pendulum system (FPS). The FPS provided the simplest means of achieving long period in the isolation system under low gravity load. Some parametric studies were conducted with different properties of FPS. When the coefficient of friction in the sliding surface of FPS is low, the seismic performance of MCR was satisfactory However, the lateral displacement in the isolation level was rather large. To restrict this displacement into adequate range, a fluid viscous dampers were used.

  • PDF

Cyclic testing of a new visco-plastic damper subjected to harmonic and quasi-static loading

  • Modhej, Ahmad;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.317-333
    • /
    • 2022
  • Visco-Plastic Damper (VPD) as a passive energy dissipation device with dual behavior has been recently numerically studied. It consists of two bent steel plates and segments with a viscoelastic solid material in between, combining and improving characteristics of both displacement-dependent and velocity-dependent devices. In order to trust the performance of VPD, for the 1st time this paper experimentally investigates prototype damper behavior under a wide range of frequency and amplitude of dynamic loading. A high-axial damping rubber is innovatively proposed as the viscoelastic layer designed to withstand large axial strains and dissipate energy accordingly. Test results confirmed all assumptions about VPD. The behavior of VPD subjected to low levels of excitation is elastic while with increasing levels of excitation, a significant source of energy dissipation is provided through the yielding of the steel elements in addition to the viscoelastic energy dissipation. The results showed energy dissipation of 99.35 kN.m under a dynamic displacement with 14.095 mm amplitude and 0.333 Hz frequency. Lateral displacement at the middle of the device was created with an amplification factor obtained ranging from 2.108 to 3.242 in the rubber block. Therefore, the energy dissipation of viscoelastic material of VPD was calculated 18.6 times that of the ordinary viscoelastic damper.

반능동 단속형 감쇠기를 이용한 현가장치 개선에 관한 연구 (A study on the improvement of a suspension system adopting a semiactive on-off damper)

  • 최성배;박윤식
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.959-967
    • /
    • 1988
  • 본 연구에서는 반능동형 감쇠기의 작동기준을 설정하고 그것의 타당성을 조사 하는 것이 주목적이어서 속도에 대한 고려는 제외하였다.이때 반능동형 감쇠계가 고정된 감쇠계수를 갖는 감쇠기로 구성된 계보다 얼마만큼 성능이 향상되며 능동형 감 쇠기(감쇠계수를 제한된 영역내에서 순간순간 조절하여 변화시킬 수 있는 감쇠기)를 갖는 계에 얼마만큼 접근하는가가 비교되어진다.

사판식 액시얼 피스톤 펌프의 가변용량 시스템의 특성에 관한 연구 (A Study on Characteristics of a Compensator System for Swash Plate Type Axial Piston Pump)

  • 김신;오석형;정재연
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.15-22
    • /
    • 1998
  • Recently, the importance of variable displacement piston pump is increasing in industrial world. Especially, most consumers require various range of pressures and flow rates. Pressure compensator is a system controlling flow rate in piston pump at low cost and, therefore, satisfies the need of consumers. However, the system has serious problems, such as response and leakage. The response and leakage are affected by clearance between actuator piston and cylinder, roughness of surface, and spool overlap. In this paper, these effects are investigated experimentally, and optimal clearance and chamfer is obtained. While diameter of cylinder is fixed and diameter of actuator piston is changed in this experiment, response and leakage are measured. Also parameters such as roughness and processing accuracy are changed for piston of fixed clearance. Experimental setup modelled into several parts of actuator piston, cylinder, spool, and swash plate. Input pressure is changed by function generator and proportional valve. The result of this experiment shows that leakage increases very much in proportion to the increase of clearance, and especially leakage occurs enormously when clearance is more than 0.002. The response is not good because as clearance increases leakage increases and as clearance decreases viscous damping effect increases. Accordingly, it is found out that optimal clearance range exists for tile response, within about 0.0012∼0.0014, at this time. Futhermore, the better roughness and geometrical accuracy of actuator piston are, the smaller are leakage and friction. The paper informs that response and leakage are influenced by and geometrical accuracy of actuator piston, roughness of surface, and the clearance between actuator piston and cylinder, and that optimal design of actuator piston in the pressure compensator is possible.

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.