• Title/Summary/Keyword: viscous and hysteretic dampers

Search Result 12, Processing Time 0.023 seconds

New experimental system for base-isolated structures with various dampers and limit aspect ratio

  • Takewaki, I.;Kanamori, M.;Yoshitomia, S.;Tsuji, M.
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.461-475
    • /
    • 2013
  • A new experimental system of base-isolated structures is proposed. There are two kinds of dampers usually used in the base-isolated buildings, one is a viscous-type damper and the other is an elastic-plastic hysteretic-type damper. The base-isolated structure with a viscous damper and that with an elastic-plastic hysteretic damper are compared in this paper. The viscous damper is modeled by a mini piston and the elastic-plastic hysteretic damper is modeled by a low yield-point steel. The capacity of both dampers is determined so that the dissipated energies are equivalent at a specified deformation. When the capacity of both dampers is determined according to this criterion, it is shown that the response of the base-isolated structure with the elastic-plastic hysteretic damper is larger than that with the viscous damper. This characteristic is demonstrated through the comparison of the bound of the aspect ratio. It is shown that the bound of aspect ratio for the base-isolated structure with the elastic-plastic hysteretic damper is generally smaller than that with the viscous damper. When the base-isolated structure is subjected to long-duration input, the mechanical property of the elastic-plastic hysteretic damper deteriorates and the response of the base-isolated structure including that damper becomes larger than that with the viscous damper. The effect of this change of material properties on the response of the base-isolated structure is also investigated.

Design of supplemental viscous dampers in inelastic SDOF system based on improved capacity spectrum method

  • Li, Bo;Liang, Xing-Wen
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.541-554
    • /
    • 2007
  • A simplified yet effective design procedure for viscous dampers was presented based on improved capacity spectrum method in the context of performance-based seismic design. The amount of added viscous damping required to meet a given performance objective was evaluated from the difference between the total demand for effective damping and inherent damping plus equivalent damping resulting from hysteretic deformation of system. Application of the method is illustrated by means of two examples, using Chinese design response spectrum and mean response spectrum. Nonlinear dynamic analysis results indicate that the maximum displacements of structures installed with supplemental dampers designed in accordance with the proposed method agree well with the given target displacements. The advantage of the presented procedure over the conventional iterative design method is also highlighted.

Nonlinear identification of Bouc-Wen hysteretic parameters using improved experience-based learning algorithm

  • Luo, Weili;Zheng, Tongyi;Tong, Huawei;Zhou, Yun;Lu, Zhongrong
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.101-114
    • /
    • 2020
  • In this paper, an improved experience-based learning algorithm (EBL), termed as IEBL, is proposed to solve the nonlinear hysteretic parameter identification problem with Bouc-Wen model. A quasi-opposition-based learning mechanism and new updating equations are introduced to improve both the exploration and exploitation abilities of the algorithm. Numerical studies on a single-degree-of-freedom system without/with viscous damping are conducted to investigate the efficiency and robustness of the proposed algorithm. A laboratory test of seven lead-filled steel tube dampers is presented and their hysteretic parameters are also successfully identified with normalized mean square error values less than 2.97%. Both numerical and laboratory results confirm that, in comparison with EBL, CMFOA, SSA, and Jaya, the IEBL is superior in nonlinear hysteretic parameter identification in terms of convergence and accuracy even under measurement noise.

Performance based optimal seismic retrofitting of yielding plane frames using added viscous damping

  • Lavan, O.;Levy, R.
    • Earthquakes and Structures
    • /
    • v.1 no.3
    • /
    • pp.307-326
    • /
    • 2010
  • This paper is concerned with the optimal seismic design of added viscous dampers in yielding plane frames. The total added damping is minimized for allowable values of local performance indices under the excitation of an ensemble of ground motions in both regular and irregular structures. The local performance indices are taken as the maximal inter-story drift of each story and/or the normalized hysteretic energy dissipated at each of the plastic hinges. Gradients of the constraints with respect to the design variables (damping coefficients) are derived, via optimal control theory, to enable an efficient first order optimization scheme to be used for the solution of the problem. An example of a ten story three bay frame is presented. This example reveals the following 'fully stressed characteristics' of the optimal solution: damping is assigned only to stories for which the local performance index has reached the allowable value. This may enable the application of efficient and practical analysis/redesign type methods for the optimal design of viscous dampers in yielding plane frames.

Effects of viscoelastic memory on the buffeting response of tall buildings

  • Palmeri, A.;Ricciardelli, F.;Muscolino, G.;De Luca, A.
    • Wind and Structures
    • /
    • v.7 no.2
    • /
    • pp.89-106
    • /
    • 2004
  • The response of tall buildings to gust buffeting is usually evaluated assuming that the structural damping is of a viscous nature. In addition, when dampers are incorporated in the design to mitigate the response, their effect is allowed for increasing the building modal damping ratios by a quantity corresponding to the additional energy dissipation arising from the presence of the devices. Even though straightforward, this procedure has some degree of inaccuracy due to the existence of a memory effect, associated with the damping mechanism, which is neglected by a viscous model. In this paper a more realistic viscoelastic model is used to evaluate the response to gust buffeting of tall buildings provided with energy dissipation devices. Both cases of viscous and hysteretic inherent damping are considered, while for the dampers a generic viscoelastic behaviour is assumed. The Laguerre Polynomial Approximation is used to write the equations of motion and find the frequency response functions. The procedure is applied to a 25-story building to quantify the memory effects, and the inaccuracy arising when the latter is neglected.

Ductility inverse-mapping method for SDOF systems including passive dampers for varying input level of ground motion

  • Kim, Hyeong-Gook;Yoshitomi, Shinta;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.1
    • /
    • pp.59-81
    • /
    • 2012
  • A ductility inverse-mapping method for SDOF systems including passive dampers is proposed which enables one to find the maximum acceleration of ground motion for the prescribed maximum response deformation. In the conventional capacity spectrum method, the maximum response deformation is computed through iterative procedures for the prescribed maximum acceleration of ground motion. This is because the equivalent linear model for response evaluation is described in terms of unknown maximum deformation. While successive calculations are needed, no numerically unstable iterative procedure is required in the proposed method. This ductility inverse-mapping method is applied to an SDOF model of bilinear hysteresis. The SDOF models without and with passive dampers (viscous, viscoelastic and hysteretic dampers) are taken into account to investigate the effectiveness of passive dampers for seismic retrofitting of building structures. Since the maximum response deformation is the principal parameter and specified sequentially, the proposed ductility inverse-mapping method is suitable for the implementation of the performance-based design.

The study of frictional damper with various control algorithms

  • Mirtaheri, Masoud;Samani, Hamid Rahmani;Zandi, Amir Peyman
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.479-487
    • /
    • 2017
  • Frictional dampers are used in structural engineering as means of passive control. Meanwhile, frictional damper shave a disadvantage compared to viscous rivals since the slippage force must be exceeded to activate the device, and cannot be ideal full range of possible events. The concept of semi-active control is utilized to overcome this shortcoming. In this paper, a new semi-active frictional damper called Smart Adjustable Frictional (SAF) damper is introduced. SAF damper consists of hydraulic, electronic units and sensors which are all linked with an active control discipline. SAF acts as a smart damper which can adapt its slippage threshold during a dynamic excitation by measuring and controlling the structural response. The novelty of this damper is, while it controls the response of the structure in real time with acceptable time delay. The paper also reports on the results of a series of experiments which have been performed on SAF dampers to obtain their prescribed hysteretic behavior for various control algorithms. The results show that SAF can produce the desired slippage load of various algorithms in real time. Numerical models incorporating control simulations are also made to obtain the hysteretic response of the system which agrees closely with test results.

A Study for Damping Application to Response-controlled Structure

  • Shinozaki, Yozo;Mogi, Yoshihiro;Ota, Masaaki;Yoshikawa, Hiroaki
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.149-164
    • /
    • 2021
  • Most of high-rise buildings in Japan*1 are structure with damping systems recently. The design procedure is performance-based design (PBD), which is based on the nonlinear response history procedure (NRHP) using 2 or 3-dimentional frame model. In addition, hysteretic property of steel plates or velocity-dependent property of viscous dampers are common practice for the damping system. However, for the selection of damping system, the easy dynamic analysis of recent date may lead the most of engineers to focus attention on the maximum response only without thinking how it shakes. By nature, the seismic design shall be to figure out the action of inertia forces by complex & dynamic loads including periodic and pulse-like characteristics, what we call seismic ground motion. And it shall be done under the dynamic condition. On the contrary, we engineers engineers have constructed the easy-to-use static loads and devoted ourselves to handle them. The structures with damping system shall be designed considering how the stiffness & damping to be applied to the structures against the inertia forces with the viewpoint of dynamic aspect. In this paper we reconsider the role of damping in vibration and give much thought to the basic of shake with damping from a standpoint of structural design. Then, we present some design examples based on them.

Seismic response Analysis of Building Structures considering the Nonlinear Property of Viscoelastic Dampers (점탄성 댐퍼의 비선형 특성을 고려한 건물의 지진응답해석)

  • Choi, Hyun;Kim, Doo-Hun;Min, Kyung-Won;Lee, Sang-Jo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.228-235
    • /
    • 1999
  • As a seismic damper the viscoelastic damper is known the effective method to control the drift of the flexible building. As the viscoelastic damper has the characteristics of both damping and stiffness specially when the rubber material used hysteretic damping. The behavior of the hysteretic damping is quite different from that of the viscous damping. For the evaluation of the viscoelastic damper for the seismic purpose the nonlinear response spectrum was generated based on the dynamic test of the viscoelastic damper and the results is compared to that of the typical linear response spectrum,

  • PDF