• Title/Summary/Keyword: viscosity increase

Search Result 1,120, Processing Time 0.023 seconds

Lotus (Nelumbo nucifera) Rhizome as an Antioxidant Dietary Fiber in Cooked Sausage: Effects on Physicochemical and Sensory Characteristics

  • Ham, Youn-Kyung;Hwang, Ko-Eun;Song, Dong-Heon;Kim, Yong-Jae;Shin, Dong-Jin;Kim, Kyung-Il;Lee, Hye-Jin;Kim, Na-Rae;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.37 no.2
    • /
    • pp.219-227
    • /
    • 2017
  • The objective of this study was to determine the physicochemical and sensory properties of cooked emulsion sausages containing different levels of lotus rhizome powder (0, 1, 2, and 3%, based on total weight). Lotus rhizome powder had no significant (p>0.05) impact on pH, moisture, protein, or ash content of sausage. However, fat content was slightly but significantly (p<0.05) decreased when the level of lotus rhizome powder was increased in the sausages. The addition of lotus rhizome powder to sausages at over 1% resulted in significantly (p<0.05) darker and less red color of cooked sausage compared to control. Increase in lotus rhizome level slightly improved the emulsion stability and apparent viscosity. Significant (p<0.05) reduction in cooking loss was observed when more than 1% of lotus rhizome powder was added to sausages. The textural properties of sausages were unaffected by the inclusion of lotus rhizome except for springiness and chewiness. On the manufacture day, control sausage had significantly (p<0.05) higher TBARS value than treatments. Regarding sensory characteristics, increased levels of lotus rhizome powder decreased (p<0.05) color and juiciness scores. However, cooked sausages exhibited similar overall acceptability regardless of the level of lotus rhizome powder added to sausages. Therefore, lotus rhizome powder, an antioxidant dietary fiber, could be used as an effective natural ingredient in meat products for the development of healthier and functional food.

Crystal Sinking Modeling for Designing Iodine Crystallizer in Thermochemical Sulfur-Iodine Hydrogen Production Process (열화학 황-요오드 수소 생산 공정의 요오드 결정화기 설계를 위한 결정 침강 모델링)

  • Park, Byung Heung;Jeong, Seong-Uk;Kang, Jeong Won
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.768-774
    • /
    • 2014
  • SI process is a thermochemical process producing hydrogen by decomposing water while recycling sulfur and iodine. Various technologies have been developed to improve the efficiency on Section III of SI process, where iodine is separated and recycled. EED(electro-electrodialysis) could increase the efficiency of Section III without additional chemical compounds but a substantial amount of $I_2$ from a process stream is loaded on EED. In order to reduce the load, a crystallization technology prior to EED is considered as an $I_2$ removal process. In this work, $I_2$ particle sinking behavior was modeled to secure basic data for designing an $I_2$ crystallizer applied to $I_2$-saturated $HI_x$ solutions. The composition of $HI_x$ solution was determined by thermodynamic UVa model and correlation equations and pure properties were used to evaluate the solution properties. A multiphysics computational tool was utilized to calculate particle sinking velocity changes with respect to $I_2$ particle radius and temperature. The terminal velocity of an $I_2$ particle was estimated around 0.5 m/s under considered radius (1.0 to 2.5 mm) and temperature (10 to $50^{\circ}C$) ranges and it was analyzed that the velocity is more dependent on the solution density than the solution viscosity.

Effect of Foaming Agent on the Continuous Voids in Lightweight Cellular Concrete (경량기포콘크리트의 연속공극 형성에 미치는 기포제의 영향)

  • 이승한
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.742-749
    • /
    • 2002
  • This study was performed to clarify the formation procedure of continuous voids in cellular concrete, and to examine the effect of a foaming agent on the manufacture of cellular concrete with continuous voids. By the experiments, it was determined that cellular concrete to be formed with continuous voids is influenced by temperature, viscosity and flowability of cement paste, and stability of air voids, and is formed in accordance with cohesion of air voids. It was also found that separate voids are formed at an added amount of air voids corresponding to 2 % or less of the amount of cement, whereas an antifoaming phenomenon occurs when the added amount of air voids exceeds 9 % of the amount of cement. In products with respective cement fineness of 3,000, 6,000, and 8,000㎠/g, a higher compressive strength was exhibited at a higher cement fineness. The continuous void ratio depending on a variation in fineness was 38 %, 52 %, and 22 % in those products, respectively. That is, a highest continuous void ratio was exhibited at a cement fineness of 6,000㎠/g. When the water-cement ratio was reduced from 45% to 25%, the compressive strength of the cellular concrete was increased from 15 kgf/㎠ to 20 kgf/㎠ Thus, the reduction in water-cement ratio was effective in achieving an increase in strength without any variation in the specific gravity of the cellular concrete.

Synthesis of Aliphatic Ester-Carbonate Copolymer (지방족 에스터-카보네이트 공중합체의 합성)

  • Kim, Dong-Kook;Kim, Ki-Seab;Chang, Young-Wook
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.970-976
    • /
    • 1996
  • An ester-carbonate copolymer was synthesized, in which carbonate was inserted into a biodegradable aliphatic polyester, poly(butylene succinate) (PBS), to modify its mechanical properties. The synthesis was carried out by condensation reactions in two steps. In the first step, oligo(butylene succinate) was prepared by the reaction of succinic acid with 1,4-butanediol (BD). In the second step, it was reacted with oligohexamethylenecarbonate diol (OHMCG) to prepare the ester-carbonate copolymer. Titanium(IV) isopropoxide (TIP) was used as a catalyst for the reaction. The structure of the copolymer was confirmed by FT-IR and $^1H$-NMR and the thermal behavior and mechanical properties were investigated by differential scanning calorimetry (DSC) and universal testing machine (UTM), respectively. It was found that optimum amount of the catalyst for the formation of high molecular weight copolymer was 1wt% for succinic acid. When the BD:OHMCG is in the range 149:1~249:1, the copolymer with high viscosity was obtained. As the OHMCG content was increased, melting temperature ($T_m$) of the copolymer was decreased. When BD:OHMCG is 149:1, the copolymer showed a increase in ultimate strain by two times and the slight decrease in modulus compared to those of PBS.

  • PDF

Effects of Compatibilizer and Graphene Oxide on the Impact Strength of PC/ABS Blend (PC/ABS의 충격강도에 미치는 상용화제와 그래핀 옥사이드의 영향)

  • Park, Ju Young;Lee, Bom Yi;Cha, Hye Jin;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.173-177
    • /
    • 2015
  • In this study, effects of both the grafted ABS-g-MAH and the added graphene oxide (GO) on the impact strength of polycarbonate (PC)/poly(acrylonitrile-butadiene-styrene) (ABS) blends were discussed. The PC/ABS blends and PC/ABS/GO composites were fabricated by using twin screw extruder with ABS-g-MAH as a compatibilizer. The ABS-g-MAH was prepared by melting extrusion of ABS and maleic anhydride (MAH) with DCP (dicumyl peroxide) as an initiator using twin screw extruder and the synthesis of ABS-g-MAH was confirmed by the presence of carbonyl group (C=O) peak at $1780cm^{-1}$ of FT-IR spectrum. According to the thermal, rheological, and impact properties of PC/ABS blends, 5 phr (parts per hundred resin) of compatibilizer was chosen as an optimum content for the PC/ABS/GO composites. It was observed that the thermal decomposition of ABS/PC/GO composites increased with GO contents, but there was no significant changes or a decrease in the impact strength. Also the composite fabricated by ABS/GO showed small increase in the impact strength. From the result of the dynamic rheometer to observe the processing properties, the complex viscosities of PC/ABS blend including the compatibilizer increased, but the complex viscosities of composites added GO were not changed.

Rheological Properties of White Pan Bread Dough Prepared with Lotus (Nelumbo nucifera) Seeds Powder (연자육 분말을 첨가한 식빵 반죽의 물리적 특성)

  • Lee, Byung-Gu;Byun, Gwang-In
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.852-858
    • /
    • 2008
  • This study investigated the rheological properties of bread dough supplemented with lotus (Nelumbo nucifera) seed powder. The rheological properties measured were dough volume, farinogram, amylogram, extensogram, pH and outernal. The lotus seed powder contained 7.74% moisture, 20.15% crude protein, 2.11% crude fat, 4.34% crude ash, and 2.78% crude fiber. The farinogram showed that with increasing concentration of lotus seed powder the absorption rate of the dough increased slightly, the development time and stability decreased, and the degree of attenuation tended to be grown along. From the amylogram it was found that the gelatinization onset temperature and the maximum viscosity of the dough tended to increase with increasing content of lotus seed powder. The extensogram showed that the degree of extension of the dough decreased with increasing content of lotus seed powder, while the degree of resistance and resistance/extensibility increased. The dough pH tended to decrease with fermentation time, but increased with increasing content of lotus seed powder. A concentration of $5{\sim}10%$ lotus seed powder appears to be suitable for the preparation of dough.

The Properties of Underwater-Hardening Epoxy Mortar Used the Rapidly Cooled Steel Slag (RCSS) (급냉 제강슬래그를 사용한 수중 경화형 에폭시 모르타르의 특성)

  • Kim, Jin-Man;Kwak, Eun-Gu;Bae, Kee-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.549-555
    • /
    • 2007
  • Although blast furnace slag has been widely used in concrete as a cementitious admixture or aggregate for many years, the slowly cooled steel slag is not used in concrete but mainly in road. Its use in concrete operates problem such as the lack of volume stability due to high free CaO content, which can be potentially hazardous in concrete. However, the rapidly cooled steel slag by atomization has a low free CaO content, a high density, and a spherical shape, so it is expected to use in concrete so much. This paper is to understand the probability that the rapid cooled steel slag can replace the silica sand used as aggregate in the epoxy mortar. We did the experimental study on the properties of the epoxy mortar having various replacement proportion of rapidly cooled steel slag. This study shown that increasing content of the rapidly cooled steel slag in epoxy mortar lead to increase largely the passing time of nozzle by O-lot, compressive strength and flexural strength. However except the flow is almost same level. So we understand that the rapidly cooled steel slag has positive effect on increasing of properties in epoxy mortar.

Electrorheological Behaviors and Interfacial Polarization of Semi-conductive Polymer-based Suspensions (반도성 고분자 현탁액의 전기유변학적 거동과 계면편극화)

  • B.D Chin;Lee, Y.S.;Lee, H.J.;S.M. Yang;Park, O.O.
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.195-201
    • /
    • 1998
  • We have studied the rheological and electrical properties of two types of electrorheological (ER) fluids based on semi-conductive polymers (poly(p-phenylene) and polyaniline). These semi-conductive polymer-based suspensions showed a dramatic increase in viscosity on the application of the static electric field due to the large value of conductivity ratio between particle and medium. The dynamic yield stresses of these ER suspensions exhibited a quadratic dependence on electric field strength at low electric fields and a linear one for high fields. They showed a maximum and then decreased with increasing bulk conductivity of particles. These yield stress behaviors under the static electric field were found to be closely related to the dielectric properties, which is in accord with Maxwell-Wagner interfacial polarization induced by the conductivity effects. In order to achieve better understanding of interfacial polarization effect on ER response and to improve the stability of ER suspension, different kinds of surfactants were employed for controlling the ER activity as well as for enhancing the colloidal stability of suspensions.

  • PDF

A Numerical Analysis of the Behavior of Liquid Film Around a Rotating Cylinder (회전하는 실린더 주변 액막의 거동에 대한 수치해석적 연구)

  • Lee, Sang-Hyuk;Lee, Jung-Hee;Hur, Nahm-Keon;Seo, Young-Jin;Kim, In-Cheol;Lee, Sung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.481-486
    • /
    • 2011
  • It is important to predict the behavior of a liquid film around a rotating cylinder in the film coating process of the steel industry. When the cylinder rotates, the behavior of the liquid film on the rotating cylinder surface is influenced by the cylinder diameter, the rotation speed, the gravitational force, and the fluid properties. These parameters determine the liquid film thickness and the rise of the film on the cylinder surface. In the present study, the two-phase interfacial flow of the liquid film on the rotating cylinder were numerically investigated by using a VOF method. For various rotation speeds, cylinder diameters and fluid viscosities, the behavior of liquid film on the rotating cylinder were predicted. Thicker film around the rotating cylinder was observed with an increase in the rotation speed, cylinder diameter, and fluid viscosity. The present results for the film thickness agreed well with available experimental and analytical results.

Quality Characteristics of Yogurt Supplemented with Angelica gigas Nakai Leaf Extract (참당귀잎 추출물을 첨가한 요구르트의 품질 특성)

  • Kim, JiYoun;Han, JeongA;Kang, Hyeoncheol;Lee, Jaehak;Kim, Hee-Yeon;Lim, Young-Soon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.237-246
    • /
    • 2019
  • In this study, quality characteristics of yogurt supplemented with Angelica gigas Nakai leaf extract were examined. The pH of the yogurt ranged from 4.40 to 4.45 and the titratable acidity ranged from 0.96% to 0.98%. The viscosity tended to decrease with the addition of the Angelica gigas Nakai leaf extract, but did not affect stability during storage. In the range of 0.1% to 0.3%, lactic acid bacteria were present in the range of 1.9×109 to 3.2×109 CFU/mL. The decursin content in yogurt was quantitatively analyzed, depending on the addition of 0.1% to 0.3% of Angelica gigas Nakai leaf extract and was found to be 0.26 ㎍/g, 15.23 ㎍/g, and 23.57 ㎍/g respectively. Organic acid showed the highest generation of lactic acid. The antioxidant properties of yogurt were shown to increase with the addition of the Angelica gigas Nakai leaf extract. The sensory score of yogurt supplemented with 0.1% of the Angelica gigas Nakai leaf extract was highly valued, at a level similar to that of plain yogurt. Yogurt supplemented with 0.2% of the extract was rated above the normal score of 6.31 to 6.50. As shown by the results, the optimal concentration of Angelica gigas Nakai leaf extract for addition to yogurt was within 0.2%.