• Title/Summary/Keyword: viscoplastic

Search Result 253, Processing Time 0.023 seconds

A THERMO-ELASTO-VISCOPLASTIC MODEL FOR COMPOSITE MATERIALS AND ITS FINITE ELEMENT ANALYSIS

  • Shin, Eui-Sup
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.45-65
    • /
    • 2002
  • A constitutive model on oorthotropic thermo-elasto-viscoplasticity for fiber-reinforced composite materials Is illustrated, and their thermomechanical responses are predicted with the fully-coupled finite element formulation. The unmixing-mixing scheme can be adopted with the multipartite matrix method as the constitutive model. Basic assumptions based upon the composite micromechanics are postulated, and the strain components of thermal expansion due to temperature change are included In the formulation. Also. more than two sets of mechanical variables, which represent the deformation states of multipartite matrix can be introduced arbitrarily. In particular, the unmixing-mixing scheme can be used with any well-known isotropic viscoplastic theory of the matrix material. The scheme unnecessitates the complex processes for developing an orthotropic viscoplastic theory. The governing equations based on fully-coupled thermomechanics are derived with constitutive arrangement by the unmixing-mixing concept. By considering some auxiliary conditions, the Initial-boundary value problem Is completely set up. As a tool of numerical analyses, the finite element method Is used with isoparametric Interpolation fer the displacement and the temperature fields. The equation of mutton and the energy conservation equation are spatially discretized, and then the time marching techniques such as the Newmark method and the Crank-Nicolson technique are applied. To solve the ultimate nonlinear simultaneous equations, a successive iteration algorithm is constructed with subincrementing technique. As a numerical study, a series of analyses are performed with the main focus on the thermomechanical coupling effect in composite materials. The progress of viscoplastic deformation, the stress-strain relation, and the temperature History are careful1y examined when composite laminates are subjected to repeated cyclic loading.

  • PDF

Viscoplastic collapse of titanium alloy tubes under cyclic bending

  • Lee, Kuo-Long;Pan, Wen-Fung
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.315-324
    • /
    • 2001
  • This paper presents the experimetal result on the viscoplastic response and collapse of the titanium alloy tubes subjected to cyclic bending. Based on the capacity of the bending machine, three different curvature-rates were used to highlight the viscoplastic behavior of the titanium alloy tubes. The Curvature-controlled experiments were conducted by the curvature-ovalization measurement apparatus which was designed by Pan et al. (1998). It can be observed from experimental data that the higher the applied curvature-rate, the greater is the degree of hardening of titanium alloy tube. However, the higher the applied curvature-rate, the greater is the degree of ovalization of tube cross-section. Furthermore, due to the greater degree of the ovalization of tube cross-section for higher curvature-rates under cyclic bending, the number of cycles to produce buckling is correspondingly reduced. Finally, the theoretical formulation, proposed by Pan and Her (1998), was modified so that it can be used for simulating the relationship between the controlled curvature and the number of cycles to produce buckling for titanium alloy tubes under cyclic bending with different curvature-rates. The theoretical simulation was compared with the experimental test data. Good agreement between the experimental and theoretical results has been achieved.

Thermo-viscoplastic finite element analysis of orthogonal metal cutting considered tool edge radius (공구끝단반경이 고려된 2차원 금속절삭에 대한 열-점소성 유한요소해석)

  • Kim, Kug-Weon;Lee, Woo-Young;Sin, Hyo-Chol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 1998
  • In this paper, thermo-viscoplastic finite element analysis of the effect of tool edge radius on cutting process are performed. The thermo-viscoplastic cutting model is capable of dealing with free chip geometry and chip-tool contact length. The coupling with thermal effects is also considered. Orthogonal cutting experiments are performed for 0.2% carbon steel with tools having 3 different edge radii and the tool forces are measured. The experimental results are discussed in comparison with the results of the FEM analysis. From the study, we confirm that this cutting model can well be applied to the cutting process considered the tool edge radius and that a major causes of the "size effect" is the tool edge radius. With numerical analysis, the effects of the tool edge radius on the stress distributions in workpiece, the temperature distributions in workpiece and tool, and the chip shape are investigated.estigated.

Coupled Thermo-Viscoplastic Three Dimensional Finite Element Anaysis of Compression Molding of Sheet Molding Compound (열유동을 고려한 SMC 압축성형공정의 3차원 유한요소 해석)

  • Kim, Soo-Young;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.488-499
    • /
    • 1996
  • SMC(Sheet molding compound) is a thermosetting material reinforced with chopped fiberglass. The compression molding of SMC was analyzed based on a rigid thermo-viscoplastic approach using a three dimensional finite element program coupled with temperatures. Only the temperature analysis part was tested in this paper by solving one-dimensional heat transfer problem and comparing with the exact solutions available in the literature. Based on this comparison the program was proved to be valid and was further applied in solving compression molding of SMC between flat dies. To investigate the usefulness of a rigid thermo-viscoplastic approach in the compression molding analysis of SMC charge, compression of rectangular shaped SMC charge at plane strain and three dimensionalde formation condition was analyzed under the same condition as given in the literature. From this comparison it was found out that the rigid thermo-viscoplastic approach was useful in analyzing SMC compression molding between flat dies.

Multiscale modeling of elasto-viscoplastic polycrystals subjected to finite deformations

  • Matous, Karel;Maniatty, Antoinette M.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.375-396
    • /
    • 2009
  • In the present work, the elasto-viscoplastic behavior, interactions between grains, and the texture evolution in polycrystalline materials subjected to finite deformations are modeled using a multiscale analysis procedure within a finite element framework. Computational homogenization is used to relate the grain (meso) scale to the macroscale. Specifically, a polycrystal is modeled by a material representative volume element (RVE) consisting of an aggregate of grains, and a periodic distribution of such unit cells is considered to describe material behavior locally on the macroscale. The elastic behavior is defined by a hyperelastic potential, and the viscoplastic response is modeled by a simple power law complemented by a work hardening equation. The finite element framework is based on a Lagrangian formulation, where a kinematic split of the deformation gradient into volume preserving and volumetric parts together with a three-field form of the Hu-Washizu variational principle is adopted to create a stable finite element method. Examples involving simple deformations of an aluminum alloy are modeled to predict inhomogeneous fields on the grain scale, and the macroscopic effective stress-strain curve and texture evolution are compared to those obtained using both upper and lower bound models.

Prediction of Material Behavior and Failure of Fresh Water Ice Based on Viscoplastic-Damage Model (점소성 손상모델 기반 담수빙 재료거동 및 파손 예측)

  • Choi, Hye-Yeon;Lee, Chi-Seung;Lee, Jong-Won;Ahn, Jae-Woo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.275-280
    • /
    • 2011
  • In the present study, a unified viscoplastic-damage model has been applied in order to describe the mechanical characteristics of fresh water ice such as nonlinear material behavior and volume fraction. The strain softening phenomenon of fresh water ice under quasi-static compressive loading has been evaluated based on unified viscoplastic model. The material degradation such as growth of slip/fraction has quite close relation with material inside damage. The volume fraction phenomenon of fresh water ice has been identified based on volume fraction (nucleation and growth of damage) model. The viscoplastic-damage model has been transformed to the fully implicit formulation and the discretized formulation has been implemented to ABAQUS user defined subroutine (User MATerial: UMAT) for the benefit of application of commercial finite element program. The proposed computational analysis method has been compared to uni-axial compression test of fresh water ice in order to validate the compatibilities, clarities and usefulness.

Excess Pore Water Pressure Response in Soft Clay under Embankment (성토하부 연약지반에서의 과잉간극수압 거동)

  • Kim, Yun-Tae;Kim, Nak-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.105-112
    • /
    • 2002
  • Increases in excess pore water pressure without change of surcharge load were reported in clay underneath embankment at Berthierville and Olga sites after the end of construction. These abnormal phenomena could not be explained by classical consolidation theory. This paper presents a nonlinear viscoplastic model to interpret an increase in pore water pressure on natural clay, The proposed model can consider the combined processes of pore water pressure dissipation according to Darcy's law and pore water pressure generation due to viscoplastic strain, as well as time-dependent viscoplastic behaviour and strain rate dependency of preconsolidation pressure. The calculated results using numerical analysis are compared with measured ones under embankments built on soft clay at Berthierville and Olga in Quebec, Canada. It may be possible to explain the phenomenon of excess pore water pressure increase after the end of construction using the proposed nonlinear viscoplastic model.

Consideration on the Results of Metal Forming Simulation Based on MINI-Elements (MINI-요소를 이용한 소성가공 공정 시뮬레이션 결과에 관한 고찰)

  • Lee Mincheol;Chung Sukhwan;Kwon Youngsam;Joun Mansoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1475-1482
    • /
    • 2004
  • In this paper, the rigid-viscoplastic finite element solutions obtained by MINI-elements based triangular elements and tetrahedral elements are compared with those obtained from numerically well-behaved rectangular and hexahedral elements. The theoretical background of the MINI-elements is introduced in detail and the rigid-viscoplastic finite element formulation is also given. Discussion on the results of the MINI-elements is made with emphasis on the effect of a stabilizer simplifying velocity-bubble coupled terms.

A Study on the Plastic Zone of the Specimen at the Impact of Dynamic Load (동하중 충격시에 시험편의 소성영역에 관한 연구)

  • 한문식;조재웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.139-144
    • /
    • 2004
  • Dynamic crack initiation in ductile steel is investigated by means of impact loaded 3 point bend(PB) specimens. Results from non-viscoplastic and viscoplastic materials are compared. Their materials are applied with various impact velocities and static strain rates. The specimen has the size 320${\times}$750 mm with a thickness of 10 mm. A modified 3PB specimen design with reduced width at the ends has been developed in order to avoid the initial compressive load of the crack tip and also to avoid the uncertain boundary conditions at the impact heads. Numerical simulations are made by using the FEM code ABAQUS. Therefore, their results are plotted by shapes of the von Mises plastic stress and equivalent plastic strain of the specimens applied by various impact velocities.