• 제목/요약/키워드: viscoelastic behavior

검색결과 317건 처리시간 0.022초

비선형 점탄성 스프링 모델을 이용한 플로팅 슬래브 궤도의 동적 거동 해석 (Analysis of Dynamic Behavior of Floating Slab Track Using a Nonlinear Viscoelastic Spring Model)

  • 장승엽;박진철;황성호;김은
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1078-1088
    • /
    • 2012
  • Recently, the vibration and structure-borne noise induced by passing trains are of great concerns, and the floating slab track is highlighted as one of most efficient alternatives to reduce the railway vibration. However, due to the non-linearity and viscosity of rubber spring used in the floating slab track, its dynamic behavior is very complex. In this study, therefore, to simulate the dynamic behavior of floating slab track with a better accuracy, a nonlinear viscoelastic rubber spring model that can be incorporated in commercial finite element analysis codes has been proposed. This model is composed of a combination of elastic spring element, friction element and viscous element, and termed the "generalized friction viscoelastic model(GFVM)". Also, in this study, the method to determine the model parameters of GFVM based on Berg's 5-parameter model was presented. The results of the finite element analysis with this rubber spring model exhibit very good correlation with the test results of a laboratory mock-up test, and the feasibility of GFVM has been verified.

주기적(週期的) 반복하중(反復荷重)을 받는 벼의 복소(複素)컴프라이언스 (Complex Compliance of Rough Rice Kernel under Cyclic Loading)

  • 김만수;라우정;박종민
    • Journal of Biosystems Engineering
    • /
    • 제17권1호
    • /
    • pp.79-90
    • /
    • 1992
  • Viscoelastic characteristics of agricultural products may be determined through three basic tests ; stress relaxation, creep, and dynamic test. Considering the changeability of living materials, dynamic test in which information is derived in a relatively short time appears to be highly desirable, in which either cyclic stress or cyclic strain is imposed and the remaining quantity (strain or stress) is measured. The periodically varying stress will also result in periodically varying strain which in a viscoelastic material should theoretically be out of phase with the stress, because part of the energy subjected to sample is stored in the material as potential energy and part is dissipated as heat. This behavior results in a complex frequency-dependent compliance denoted by J($i{\omega}$). The complex compliance and therefore the storage compliance, the loss compliance, the phase angle, and percent energy loss for the sample should be obtainable with a given static viscoelastic property of the material under static load. The complex compliance of the rough rice kernel were computed from the Burger's model describing creep behavior of the material which were obtained in the previous study. Also, the effects of cyclic load and moisture content of grain on the dynamic viscoelastic behavior of the samples were analyized. The results obtained from this study were summarized as follows ; 1. The storage compliance of the rough rice kernel slightly decreased with the frequency applied but at above the frequency of 0.1 Hz it was nearly constant with the frequency, and the loss compliance of the sample very rapidly decreased with increase in the frequency on those frequency ranges. 2. It was shown that the storage compliance and the loss compliance of the sample increased with increase in grain moisture content. Effect of grain moisture content on the storage compliance of the sample was highly significant than effect of the frequency applied, but effect of the frequency on the loss compliance of the sample was more significant than effect of grain moisture content. 3. In low moisture content, the percent energy loss of Japonica-type rough rice was much higher than that of Indica-type rough rice, but, in high moisture content, vice versa.

  • PDF

아스팔트 포장의 점탄성 거동 모델에 관한 연구 (A Study on the Viscoelastic Model of Asphalt Concrete Pavement)

  • 조병완;태기호;노동우
    • 대한토목학회논문집
    • /
    • 제26권3A호
    • /
    • pp.429-437
    • /
    • 2006
  • 본 연구에서는 아스팔트 포장의 표층을 구성하고 있는 아스팔트 혼합물의 점탄성(Viscoelasticity) 거동을 규명하기 위하여 먼저 기존의 일반적인 역학적 모델을 고찰하였으며, 차량의 단일 축 하중을 고려한 점탄성 모델식을 제안하고 그 모델에 대한 기본식을 유도하였다. 또한, 제안된 모델식의 검증을 위해서 시험구간에 대하여 비파괴시험을 실시하였으며 하중 이력에 따른 변형률과 처짐값을 산출하고 이를 제안된 모델식의 계산값과 비교분석하였다. 분석 결과, 시험값과 모델식의 결과값의 오차가 거의 없음을 알 수 있었으며, 시간에 따른 처짐의 양상만을 비교해 볼 때, 본 연구에서 제안한 모델식에 의해서 실제 하중에 의한 포장의 처짐을 예측하는 것이 가능하다는 결론을 얻을 수 있었다.

Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads

  • Ismail M. Mudhaffar;Abdelbaki Chikh;Abdelouahed Tounsi;Mohammed A. Al-Osta;Mesfer M. Al-Zahrani;Salah U. Al-Dulaijan
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.167-180
    • /
    • 2023
  • This work applies a four-known quasi-3D shear deformation theory to investigate the bending behavior of a functionally graded plate resting on a viscoelastic foundation and subjected to hygro-thermo-mechanical loading. The theory utilizes a hyperbolic shape function to predict the transverse shear stress, and the transverse stretching effect of the plate is considered. The principle of virtual displacement is applied to obtain the governing differential equations, and the Navier method, which comprises an exponential term, is used to obtain the solution. Novel to the current study, the impact of the viscoelastic foundation model, which includes a time-dependent viscosity parameter in addition to Winkler's and Pasternak parameters, is carefully investigated. Numerical examples are presented to validate the theory. A parametric study is conducted to study the effect of the damping coefficient, the linear and nonlinear loadings, the power-law index, and the plate width-tothickness ratio on the plate bending response. The results show that the presence of the viscoelastic foundation causes an 18% decrease in the plate deflection and about a 10% increase in transverse shear stresses under both linear and nonlinear loading conditions. Additionally, nonlinear loading causes a one-and-a-half times increase in horizontal stresses and a nearly two-times increase in normal transverse stresses compared to linear loading. Based on the article's findings, it can be concluded that the viscosity effect plays a significant role in the bending response of plates in hygrothermal environments. Hence it shall be considered in the design.

반고형 식품류의 정상유동특성 및 동적 점탄성 (Steady Shear Flow and Dynamic Viscoelastic Properties of Semi-Solid Food Materials)

  • 송기원;장갑식
    • 유변학
    • /
    • 제11권2호
    • /
    • pp.143-152
    • /
    • 1999
  • 본 연구에서는 Rheometrics Fluids Spectrometer(RFS II)를 사용하여 세 종류의 상용 반고형 식품(마요네즈, 토마토 케찹, 와사비)의 정상유동특성 및 소진폭 전단변형하에서의 동적 점탄성을 광범위한 전단속도와 각주파수 영역에서 측정하였다. 이들 측정결과로부터 정상유동특성의 전단속도 의존성 및 동적 점탄성의 각주파수 의존성을 보고하였다. 그리고 항복응력의 항을 갖는 몇 가지 점소성 유동모델을 사용하여 정상유동특성을 정량적으로 평가하고 이들 모델의 적용성을 비교.검증하였다. 나아가서 수정된 형태의 지수법칙 관계식을 도입하여 정상유동특성(비선형 거동)과 동적 점탄성(선형 거동)간의 상관관계에 대해 검토하였다. 이상의 연구를 통해 얻어진 결과를 요약하면 다음과 같다. (1) 반고형 식품류는 상당한 크기의 항복응력을 갖는 점소성 물질로서 전단속도가 증가할수록 정상류점도가 급격히 감소하는 shear-thinning 거동을 나타낸다. (2) Herschel-Bulkley 모델, Mizrahi-Berk 모델 및 Heinz-Casson 모델은 반고형 식품류의 정상유동거동을 잘 기술할 수 있다. 이들 중에서도 Heinz-Casson 모델이 가장 우수한 적용성을 갖는다 (3) 반고형 식품류는 임계 전단속도를 경계로 shear-thinning 특성이 변화한다. 즉 낮은 전단속도에 비해 높은 전단속도 영역에서 분산입자 응집체의 구조파괴가 더욱 활발하게 진행되어 보다 현저한 shear-thinning 특성을 나타낸다. (4) 저장 탄성률 및 손실탄성률은 양자 모두 각주파수가 증가할수록 점차로 증가하나 각주파수 의존성은 그다지 크지 않다. 또한 광범위한 각주파수 영역에서 탄성적 성질이 점성적 성질에 비해 보다 우세하게 나타난다. (5) 정상류점도, 동적점도 및 복소점도는 모두 power-law 모델의 거동을 잘 만족한다. 또한 정상유동특성과 동적 점탄성간의 상관관계는 수정된 형태의 지수법칙 관계식에 의해 잘 기술될 수 있다.

  • PDF

점탄성 감쇠기 적용을 위한 실물크기 5층 건물의 가진 및 시스템 식별 (Excitation and System Identification of a Full-Scale Five-Story Structure for the Application of Viscoelastic Dampers)

  • 민경원;이상현;김진구;이영철;이승준;최현훈
    • 한국지진공학회논문집
    • /
    • 제7권3호
    • /
    • pp.1-7
    • /
    • 2003
  • 점탄성 감쇠기의 설계를 위한 자료를 얻기 위해 실물크기 5층 건물에 대해 가진과 시스템 식별을 수행하였다. 5층 바닥에 설치된 HWD는 건물을 움직이는 외부 가진력으로 작용하였고, 각 층의 응답을 측정하여 점탄성 감쇠기의 용량과 최적위치에 필요한 자료를 확보하였다. 고유진동수, 감쇠비, 모드와 같은 동적특성을 파악하기 위해 건물에 HMD로 조화하중과 백색잡음 하중을 주어 실험을 수행하였다. 동반논문에서는 건물의 층간에 설계된 점탄성 감쇠기를 설치한 후 응답 거동을 얻기 위한 실험 연구를 수행하였다.

Free vibration analysis of trapezoidal Double Layered plates embedded with viscoelastic medium for general boundary conditions using differential quadrature method

  • S. Abdul Ameer;Abbas Hameed Abdul Hussein;Mohammed H. Mahdi;Fahmy Gad Elsaid;V. Tahouneh
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.429-441
    • /
    • 2024
  • This paper studies the free vibration behavior of trapezoidal shaped coupled double-layered graphene sheets (DLGS) system using first-order shear deformation theory (FSDT) and incorporating nonlocal elasticity theory. Two nanoplates are assumed to be bonded by an interlayer van der walls force and surrounded by an external kelvin-voight viscoelastic medium. The governing equations together with related boundary condition are discretized using a mapping-differential quadrature method (DQM) in the spatial domain. Then the natural frequency of the system is obtained by solving the eigen value matrix equation. The validity of the current study is evaluated by comparing its numerical results with those available in the literature and then a parametric study is thoroughly performed, concentrating on the series effects of angles and aspect ratio of GS, viscoelastic medium, and nonlocal parameter. The model is used to study the vibration of DLGS for two typical deformation modes, the in-phase and out-of-phase vibrations, which are investigated. Numerical results indicate that due to Increasing the damping parameter of the viscoelastic medium has reduced the frequency of both modes and this medium has been able to overdamped the oscillations and by increasing stiffness parameters both in-phase and out-of-phase vibration frequencies increased.

Shaking table study of a 2/5 scale steel frame with new viscoelastic dampers

  • Chang, K.C.;Tsai, M.H.;Lai, M.L.
    • Structural Engineering and Mechanics
    • /
    • 제11권3호
    • /
    • pp.273-286
    • /
    • 2001
  • Viscoelastic (VE) dampers have shown to be capable of providing structures with considerable additional damping to reduce the dynamic response of structures. However, the VE material appears to be sensitive to the variations in ambient temperature and vibration frequency. To minimize these effects, a new VE material has been developed. This new material shows less sensitivity to variations in vibration frequency and temperature. However, it is highly dependent on the shear strain. Experimental studies on the seismic behavior of a 2/5 scale five-story steel frame with these new VE dampers have been carried out. Test results show that the structural response can be effectively reduced due to the added stiffness and damping provided by the new type of VE dampers under both mild and strong earthquake ground motions. In addition, analytical studies have been carried out to describe the strain-dependent behavior of the VE damper. The dynamic properties and hysteresis behavior of the dampers can be simulated by a simple bilinear model based on the equivalent dissipated energy principle proposed in this study.

비선형 이동경화법칙에 기초한 점성토의 거동 특성 (A Study on Clay Behavior Characteristics Based on Non-Linear Kinematic Hardening Rule)

  • 김용성
    • 한국농공학회지
    • /
    • 제44권4호
    • /
    • pp.114-122
    • /
    • 2002
  • Up to now, many constitutive models for clay have been proposed and studied based on the elasto-plastic or elasto-viscoplastic theory and it has been recognized that the effect of time on the loading process is a salient feature. In the present study, cyclic behavior characteristics of clay was studied with a viscoelastic-viscoplastic constitutive model for clay based on the non-linear kinematic hardening rule. In order to examine the behavior of clay several cyclic untrained triaxial tests and also their numerical simulations were performed. As results of that, it was found that the proposed model can well describe cyclic behaviors of clay such as frequency dependent characteristics, and have the high feasibility of numerical simulation for dynamic analysis.

벼의 리올러지 특성(特性)(II) -곡립(穀粒)의 압축(壓縮)크리이프- (Rheological Properties of Rough Rice (II) -Compressive Creep of Rough Rice Kernel-)

  • 김만수;김성래;박종민
    • Journal of Biosystems Engineering
    • /
    • 제15권3호
    • /
    • pp.219-229
    • /
    • 1990
  • The compression creep behavior of grains when loaded depends not only on load but also on duration of load application. The most common methods of studying the load-time characteristics of agricultural products is by employing rheological models such as Burger's model. However it is sometimes not sufficient to describe the viscoelastic behavior of grains to be Burger's model. For this reason, this study was conducted to develop the rheological model which represented the creep compliance response of the rough rice kernel and was a function of initial stress applied and time. The effects of the initial stress applied and the moisture content on the compression creep behavior of the rough rice kernel were analyzed. The results were obtained from the study as follows: 1. Since the viscoelastic behavior of the rough rice kernel was nonlinear, the transient and steady state creep compliance was satisfactorily modelled as follows: $$J({\sigma},t)=A{\sigma}^B[C+Dt-exp(-Ft)]$$ But, for the every stress applied, the compression creep behavior of the samples tested can be well described by Burger's model respectively. 2. The creep compliance, the instantaneous elastic strain, the retarded elastic strain and the viscous strain of the sample tested generally increased in magnitude with increasing the applied initial stress and the moisture content used in the tests. At low moisture content, the creep compliance for the Japonica-type rough rice kernel Was a little higher than those for Indica-type and at high moisture content, vice versa at high moisture content. 3. The retardation times of the samples had not an uniform tendency by the initial stress and the moisture content. The retardation times ranged from 0.66 to 6.76 seconds, and the creep progressed from transient to steady state at a relatively high rate. 4. The less viscous strain than the instantaneous elastic strain for the samples tested indicated that rough rice kernel behaved as a viscoelastic body characterized by elasticity than viscosity.

  • PDF