• 제목/요약/키워드: viscoelastic beams

검색결과 54건 처리시간 0.03초

Enhancing Structural Integrity of Composite Sandwich Beams Using Viscoelastic Bonding with Tapered Epoxy Reinforcement

  • Rajesh Lalsing Shirale;Surekha Anil Bhalchandra
    • 한국재료학회지
    • /
    • 제34권3호
    • /
    • pp.125-137
    • /
    • 2024
  • Composite laminates are used in a wide range of applications including defense, automotive, aviation and aerospace, marine, wind energy, and recreational sporting goods. These composite beams still exhibit problems such as buckling, local deformations, and interlaminar delamination. To overcome these drawbacks, a novel viscoelastic autoclave bonding with tapered epoxy reinforcement polyurethane films is proposed. In existing laminates, compression face wrinkling and interlaminar delamination is caused in the sandwich beam. The unique viscoelastic autoclave spunbond interlayer bonding is designed to prevent face wrinkling and absorb and distribute stresses induced by external loads, thereby eliminating interlaminar delamination in the sandwich beam. Also, the existing special reinforcement causes stress concentrations, and the core is not effectively connected, which directly affects the stiffness of the beam. To address this, a novel tapered epoxy polyurethane reinforcement adhesive film is proposed, whose reinforcement thickness gradually tapers as it enters the core material. This minimizes stress concentrations at the interface, preventing excessive adhesive squeeze-out during the bonding process, and improves the stiffness of the beam. Results indicate the proposed model avoids the formation of micro cracks, interlaminar delamination, buckling, and local deformations, and effectively improves the stiffness of the beam.

Analysis of an electrically actuated fractional model of viscoelastic microbeams

  • Bahraini, Seyed Masoud Sotoodeh;Eghtesad, Mohammad;Farid, Mehrdad;Ghavanloo, Esmaeal
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.937-956
    • /
    • 2014
  • The MEMS structures usually are made from silicon; consideration of the viscoelastic effect in microbeams duo to the phenomena of silicon creep is necessary. Application of the fractional model of microbeams made from viscoelastic materials is studied in this paper. Quasi-static and dynamical responses of an electrically actuated viscoelastic microbeam are investigated. For this purpose, a nonlinear finite element formulation of viscoelastic beams in combination with the fractional derivative constitutive equations is elucidated. The four-parameter fractional derivative model is used to describe the constitutive equations. The electric force acting on the microbeam is introduced and numerical methods for solving the nonlinear algebraic equation of quasi-static response and nonlinear equation of motion of dynamical response are described. The deflected configurations of a microbeam for different purely DC voltages and the tip displacement of the microbeam under a combined DC and AC voltages are presented. The validity of the present analysis is confirmed by comparing the results with those of the corresponding cases available in the literature.

겹침이음부 및 국부적 층댐퍼를 갖는 보의 횡진동 특성 (Lateral Vibration of Beams with a Bonded Lap Joint and Partial Layered Dampers)

  • 박정일;최낙삼
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.174-183
    • /
    • 1999
  • An analytical model for the lateral vibration of beams with a bonded lap joint and partial layered dampers has been proposed in this paper. Both shear and normal forces acting along the interface between the elastic and viscoelastic layers were considered in the vibration analysis. Analytical results were compared with those obtained by a finite element method. Effects of the size and location of layers in partial dampers on system loss factor($\eta_s$) and resonant frequency($\omega_r$) were studied. which showed that partial dampers adhered to the site exhibiting the maximum amplitude of vibration were most influential in the increase of $\eta_s$ and the decrease of $\omega_r$. Specific system loss factor( $\eta_s$ divided by total mass of system) was also evaluated in the analysis.

  • PDF

수동감쇠 적층보의 진동해석을 위한 스펙트럴요소법의 적용 (Application of Spectral Element Method for the Vibration Analysis of Passive Constrained Layer Damping Beams)

  • 송지훈;홍석윤
    • 한국음향학회지
    • /
    • 제28권1호
    • /
    • pp.25-31
    • /
    • 2009
  • 본 논문에서는 수동감쇠 적층보에 대한 스펙트럴요소법을 유도하였다. 수동감쇠 적층보의 중심층인 점탄성층은 주파수에 따라 값이 변하는 복소 계수를 가지고 있다. 그래서 점탄성층의 주파수 종속적인 복소 계수를 계산하기 위하여, 스펙트럴요소법을 주파수축 상에서 파동해로부터 얻은 엄밀해를 기반으로 하는 동적형상함수를 사용하여 유도하였다. 유도된 수동감쇠 적층보에 대한 스펙트럴요소의 신뢰성과 정밀도를 검증하기 위하여 스펙트럴요소법과 유한요소법을 사용하여 구한 주파수응답함수와 동적응답을 비교하였다. 비교 결과 수동감쇠 적층보에 대한 스펙트럴요소가 유한요소에 비해서 보다 신뢰성 있는 결과를 제공하는 것을 알 수 있었다.

점탄성층을 갖는 복합재보의 축하중 작용시 진동해석 (Vibration Analysis of Axially-Stressed Composite Beam with Viscoelastic Layer)

  • 이덕규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.33-38
    • /
    • 2002
  • Dynamic analysis of laminated beams with a embedded damping layer under tension or compression axial load is investigated. Layer-Wise Zig-Zag Beam Theory and Interdependent Kinematic Relation using the governing equations of motion are incorporated to model the laminated beams with a damping layer and a corresponding beam zig-zag finite element is developed. Flexural frequencies and modal loss factors under tension or compression axial load are calculated based on Complex Eigenvalue Method. The effects of the axial tension and compression load on the frequencies and loss factors are discussed.

  • PDF

굽힘진동 감쇠를 위한 구속층의 최적설계에 관한 연구 (A Study on the Optimum Design of Constrained layer for the Damping of Flexural Vibration)

  • 김사수;이민우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.95-101
    • /
    • 1997
  • A general method is presented for the analysis of the damping effectiveness of viscoelastic layer applied to elastic beam. The damping is attributed to the shear deformations of the treatment. Specific results are then given for sandwich beams with dissipative cores. The calculated results by this method are validated by comparison with the experimental results. Optimum design of a viscoelastic damping layer which is constrainedly cohered on a steel beam is discussed from the viewpoint of the modal loss factor. An object function is a loss factor of 3-layered beam and design variable is the thickness of constraining layer and viscoelastic layer. Optimum thickness can be obtained when 3-layered beam has a maximum loss factor.

  • PDF

Analysis of the strain energy release rate for time-dependent delamination in multilayered beams with creep

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • 제11권1호
    • /
    • pp.41-57
    • /
    • 2022
  • This paper is focused on delamination analysis of a multilayered inhomogeneous viscoelastic beam subjected to linear creep under constant applied stress. The viscoelastic model that is used to treat the creep consists of consecutively connected units. Each unit consists of one spring and two dashpots. The number of units in the model is arbitrary. The modulus of elasticity of the spring in each unit changes with time. Besides, the modulii of elasticity and the coefficients of viscosity change continuously along the thickness, width and length in each layer since the material is continuously inhomogeneous in each layer of the beam. A time-dependent solution to the strain energy release rate for the delamination is derived. A time-dependent solution to the J-integral is derived too. A parametric analysis of the strain energy release rate is carried-out by applying the solution derived. The influence of various factors such as creep, material inhomogeneity, the change of the modulii of elasticity with time and the number of units in the viscoelastic model on the strain energy release rate are clarified.

Thermoelastic deformation properties of non-localized and axially moving viscoelastic Zener nanobeams

  • Ahmed E. Abouelregal;Badahi Ould Mohamed;Hamid M. Sedighi
    • Advances in nano research
    • /
    • 제16권2호
    • /
    • pp.141-154
    • /
    • 2024
  • This study aims to develop explicit models to investigate thermo-mechanical interactions in moving nanobeams. These models aim to capture the small-scale effects that arise in continuous mechanical systems. Assumptions are made based on the Euler-Bernoulli beam concept and the fractional Zener beam-matter model. The viscoelastic material law can be formulated using the fractional Caputo derivative. The non-local Eringen model and the two-phase delayed heat transfer theory are also taken into account. By comparing the numerical results to those obtained using conventional heat transfer models, it becomes evident that non-localization, fractional derivatives and dual-phase delays influence the magnitude of thermally induced physical fields. The results validate the significant role of the damping coefficient in the system's stability, which is further dependent on the values of relaxation stiffness and fractional order.

전기장에 따른 복합재 ER Beam의 진동제어 특성 (Vibration Control Characteristics of Laminated Composite ER Beams with Electric Field Dependence)

  • 김재환;강영규;최승복
    • 소음진동
    • /
    • 제11권3호
    • /
    • pp.416-421
    • /
    • 2001
  • The flexural vibration of laminated composite beams with an electro-rheological(ER) fluid has been investigated to design a structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, mu1ti-layer laminated beams. The damping radio and modal damping of the first bending mode are calculated by means of iterative complex eigensolution method. Finite element method is used for the analysis of dynamic characteristics of the laminated composite beams with an ER fluid. For the validation of modeling methodology using viscoelastic theory the predicted dynamic properties are compared to the measured ones by author's previous work. They are in good agreement. This paper addresses a design strategy of laminated composite under flexural vibrations with an ER fluid.

  • PDF

Exact solutions of vibration and postbuckling response of curved beam rested on nonlinear viscoelastic foundations

  • Nazira Mohamed;Salwa A. Mohamed;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • 제11권1호
    • /
    • pp.55-81
    • /
    • 2024
  • This paper presents the exact solutions and closed forms for of nonlinear stability and vibration behaviors of straight and curved beams with nonlinear viscoelastic boundary conditions, for the first time. The mathematical formulations of the beam are expressed based on Euler-Bernoulli beam theory with the von Karman nonlinearity to include the mid-plane stretching. The classical boundary conditions are replaced by nonlinear viscoelastic boundary conditions on both sides, that are presented by three elements (i.e., linear spring, nonlinear spring, and nonlinear damper). The nonlinear integro-differential equation of buckling problem subjected to nonlinear nonhomogeneous boundary conditions is derived and exactly solved to compute nonlinear static response and critical buckling load. The vibration problem is converted to nonlinear eigenvalue problem and solved analytically to calculate the natural frequencies and to predict the corresponding mode shapes. Parametric studies are carried out to depict the effects of nonlinear boundary conditions and amplitude of initial curvature on nonlinear static response and vibration behaviors of curved beam. Numerical results show that the nonlinear boundary conditions have significant effects on the critical buckling load, nonlinear buckling response and natural frequencies of the curved beam. The proposed model can be exploited in analysis of macrosystem (airfoil, flappers and wings) and microsystem (MEMS, nanosensor and nanoactuators).