• 제목/요약/키워드: viscoelastic beam

검색결과 125건 처리시간 0.025초

Enhancing Structural Integrity of Composite Sandwich Beams Using Viscoelastic Bonding with Tapered Epoxy Reinforcement

  • Rajesh Lalsing Shirale;Surekha Anil Bhalchandra
    • 한국재료학회지
    • /
    • 제34권3호
    • /
    • pp.125-137
    • /
    • 2024
  • Composite laminates are used in a wide range of applications including defense, automotive, aviation and aerospace, marine, wind energy, and recreational sporting goods. These composite beams still exhibit problems such as buckling, local deformations, and interlaminar delamination. To overcome these drawbacks, a novel viscoelastic autoclave bonding with tapered epoxy reinforcement polyurethane films is proposed. In existing laminates, compression face wrinkling and interlaminar delamination is caused in the sandwich beam. The unique viscoelastic autoclave spunbond interlayer bonding is designed to prevent face wrinkling and absorb and distribute stresses induced by external loads, thereby eliminating interlaminar delamination in the sandwich beam. Also, the existing special reinforcement causes stress concentrations, and the core is not effectively connected, which directly affects the stiffness of the beam. To address this, a novel tapered epoxy polyurethane reinforcement adhesive film is proposed, whose reinforcement thickness gradually tapers as it enters the core material. This minimizes stress concentrations at the interface, preventing excessive adhesive squeeze-out during the bonding process, and improves the stiffness of the beam. Results indicate the proposed model avoids the formation of micro cracks, interlaminar delamination, buckling, and local deformations, and effectively improves the stiffness of the beam.

Dynamic response of curved Timoshenko beams resting on viscoelastic foundation

  • Calim, Faruk Firat
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.761-774
    • /
    • 2016
  • Curved beams' dynamic behavior on viscoelastic foundation is the subject of the current paper. By rewritten the Timoshenko beams theory formulation for the curved and twisted spatial rods, governing equations are obtained for the circular beams on viscoelastic foundation. Using the complementary functions method (CFM), in Laplace domain, an ordinary differential equation is solved and then those results are transformed to real space by Durbin's algorithm. Verification of the proposed method is illustrated by solving an example by variating foundation parameters.

유연보의 과도 진동 감쇠를 위한 점탄성 재료의 최적 분포 (Optimal Distribution of Viscoelastic Material for Transient Vibration Suppression of a Flexible Beam)

  • Kim, Tae-Woo;Kim, Ji-Hwan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.362.1-362
    • /
    • 2002
  • Eigenvalues are taken as performance criteria for structural damping design using viscoelastic material. Given material properties, optimal distribution of damping material is sought based on eigenvalue sensitivity. For eigenanalysis of frequency dependent viscoelastic material rented structures, Golla-Hughes-McTavish(GHM) model is used and some dominant modes are chosen for consideration. (omitted)

  • PDF

Analytic solution for the interaction between a viscoelastic Bernoulli-Navier beam and a winkler medium

  • Floris, Claudio;Lamacchia, Francesco Paolo
    • Structural Engineering and Mechanics
    • /
    • 제38권5호
    • /
    • pp.593-618
    • /
    • 2011
  • This paper deals with the problem of the determination of the response of a viscoelastic Bernoulli-Navier beam, which is resting on an elastic medium. Assuming uniaxial bending, the displacement of the beam axis is governed by an integro-differential equation. The compatibility of the displacements between the beam and the elastic medium is imposed through an integral equation. In general and in particular in the case of a Boussinesq medium, the solution has to be pursued numerically. On the contrary, in the case of a Winkler's medium the compatibility equation becomes a linear finite relationship, which allows finding an original analytical solution of the problem for both hereditary and aging behavior of the beam. Some numerical examples complete the paper, in which a comparison is made between the hereditary and the aging model for the creep of the beam.

Forced vibration analysis of damped beam structures with composite cross-section using Timoshenko beam element

  • Won, S.G.;Bae, S.H.;Jeong, W.B.;Cho, J.R.;Bae, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제43권1호
    • /
    • pp.15-30
    • /
    • 2012
  • A damped Timoshenko beam element is introduced for the DOF-efficient forced vibration analysis of beam-like structures coated with viscoelastic damping layers. The rotary inertia as well as the shear deformation is considered, and the damping effect of viscoelastic layers is modeled as an imaginary loss factor in the complex shear modulus. A complex composite cross-section of structures is replaced with a homogeneous one by means of the transformed section approach in order to construct an equivalent single-layer finite element model capable of employing the standard $C^{0}$-continuity basis functions. The numerical reliability and the DOF-efficiency are explored through the comparative numerical experiments.

Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method

  • Rostamia, Rasoul;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.821-829
    • /
    • 2021
  • Nonlinear dynamic response of a sandwich beam considering porous core and nano-composite face sheet on nonlinear viscoelastic foundation with temperature-variable material properties is investigated in this research. The Hamilton's principle and beam theory are used to drive the equations of motion. The nonlinear differential equations of sandwich beam respect to time are obtained to solve nonlinear differential equations by Homotopy perturbation method (HPM). The effects of various parameters such as linear and nonlinear damping coefficient, linear and nonlinear spring constant, shear constant of Pasternak type for elastic foundation, temperature variation, volume fraction of carbon nanotube, porosity distribution and porosity coefficient on nonlinear dynamic response of sandwich beam are presented. The results of this paper could be used to analysis of dynamic modeling for a flexible structure in many industries such as automobiles, Shipbuilding, aircrafts and spacecraft with solar easured at current time step and the velocity and displacement were estimated through linear integration.

GHM 기법을 이용한 회전하는 복합재-VEM 박판보의 진동해석 (Vibration Analysis of Composite-VEM Thin-walled Rotating Beam Using GHM Methodology)

  • 박재용;박철휴;곽문규;나성수
    • 한국소음진동공학회논문집
    • /
    • 제14권7호
    • /
    • pp.639-647
    • /
    • 2004
  • This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic material technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive material technology exploits the damping capabilities of viscoelastic material (VEM) embedded into the host structure. The main structure is modeled as a composite thin-walled beam Incorporating a number of nonclassical features such as transverse shear. anisotropy of constituent materials, and rotary inertia etc. The VEM layer damping treatment is modeled by using the Golla-Hughes-McTavish (GHM) method, which is employed to account for the frequency-dependent characteristics of the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of both techniques, namely, the tailoring and damping technology on dynamic response of a thin-walled beam structure exposed to external time-dependent excitation.

복소 전단탄성계수를 갖는 다층 감쇠보의 유한요소 진동 해석 (Finite Element Vibration Analysis of Multi-layered Damped Sandwich Beam with Complex Shear Modulus)

  • 배승훈;원성규;정의봉;조진래;배수룡
    • 한국소음진동공학회논문집
    • /
    • 제21권1호
    • /
    • pp.9-17
    • /
    • 2011
  • In this paper, the general equation of motion of damped sandwich beam with multi-viscoelastic material layer was derived based on the equation presented by Mead and Markus. The viscoelastic layer, which has characteristics of complex shear modulus, was assumed to be dominantly under shear deformation. The equation of motion of n-layered damped sandwich beam in bending could be represented by (n+3)th order ordinary differential equation. Finite element model for the n-layered damped sandwich beam was formulated and programmed using higher order shape functions. Several numerical examples were implemented to show the effects of damped material.

Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material

  • Kang, Young-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권1호
    • /
    • pp.37-42
    • /
    • 2003
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

Porosity-dependent vibration investigation of functionally graded carbon nanotube-reinforced composite beam

  • Abdulmajeed M. Alsubaie;Ibrahim Alfaqih;Mohammed A. Al-Osta;Abdelouahed Tounsi;Abdelbaki Chikh;Ismail M. Mudhaffar;Saeed Tahir
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.75-85
    • /
    • 2023
  • This work utilizes simplified higher-order shear deformation beam theory (HSDBT) to investigate the vibration response for functionally graded carbon nanotube-reinforced composite (CNTRC) beam. Novel to this work, single-walled carbon nanotubes (SWCNTs) are distributed and aligned in a matrix of polymer throughout the beam, resting on a viscoelastic foundation. Four un-similar patterns of reinforcement distribution functions are investigated for the CNTRC beam. Porosity is another consideration taken into account due to its significant effect on functionally graded materials (FGMs) properties. Three types of uneven porosity distributions are studied in this study. The damping coefficient and Winkler's and Pasternak's parameters are considered in investigating the viscosity effect on the foundation. Moreover, the impact of different parameters on the vibration of the CNTRC beam supported by a viscoelastic foundation is discussed. A comparison to other works is made to validate numerical results in addition to analytical discussions. The findings indicate that incorporating a damping coefficient can improve the vibration performance, especially when the spring constant factors are raised. Additionally, it has been noted that the fundamental frequency of a beam increases as the porosity coefficient increases, indicating that porosity may have a significant impact on the vibrational characteristics of beams.