• Title/Summary/Keyword: virus filtration

Search Result 50, Processing Time 0.022 seconds

Improvement of Virus Safety of an Antihemophilc Factor IX by Virus Filtration Process

  • Kim, In-Seop;Choi, Yong-Woon;Kang, Yong;Sung, Hark-Mo;Sohn, Ki-Whan;Kim, Yong-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1317-1325
    • /
    • 2008
  • Viral safety is an important prerequisite for clinical preparations of plasma-derived pharmaceuticals. One potential way to increase the safety of therapeutic biological products is the use of a virus-retentive filter. In order to increase the viral safety of human antihemophilic factor IX, particularly in regard to non-enveloped viruses, a virus removal process using a polyvinylidene fluoride membrane filter (Viresolve NFP) has been optimized. The most critical factor affecting the filtration efficiency was operating pH and the optimum pH was 6 or 7. Flow rate increased with increasing operating pressure and temperature. Recovery yield in the optimized production-scale process was 96%. No substantial changes were observed in the physical and biochemical characteristics of the filtered factor IX in comparison with those before filtration. A 47-mm disk membrane filter was used to simulate the process performance of the production-scale cartridges and to test if it could remove several experimental model viruses for human pathogenic viruses, including human hepatitis A virus (HAV), porcine parvovirus (PPV), murine encephalomyocarditis virus (EMCV), human immunodeficiency virus type 1 (HIV), bovine viral diarrhea virus (BVDV), and bovine herpes virus (BHV). Non-enveloped viruses (HAV, PPV, and EMCV) as well as enveloped viruses (HIV, BVDV, and BHV) were completely removed during filtration. The log reduction factors achieved were $\geq$6.12 for HAV, $\geq$4.28 for PPV, $\geq$5.33 for EMCV, $\geq$5.51 for HIV, $\geq$5.17 for BVDV, and $\geq$5.75 for BHV. These results indicate that the virus filtration process successfully improved the viral safety of factor IX.

Optimization and Validation of a Virus Filtration Process for Efficient Removal of Viruses from Urokinase Solution Prepared from Human Urine

  • Kim, In-Seop;Choi, Yong-Woon;Lee, Sung-Rae
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.140-147
    • /
    • 2004
  • Urokinase is an enzyme with fibrinolytic activity (plasminogen activator) isolated from fresh urine of healthy men. Viral safety is an important prerequisite for clinical preparation of the protein from urine. In order to increase the viral safety of a high purity urokinase in regard to non-enveloped viruses, a virus removal process using a novel polyvinylidene fluoride membrane filter (Viresolve NFP) has been optimized. Urokinase was able to pass through the filter with recoveries of 95% in the production scale process. No substantial changes were observed in physical and biochemical characteristics of the filtered urokinase in comparison with those of the enzyme before filtration. A 47-mm disk membrane filter was used to simulate the process performance of the production scale cartridges and tested if it could remove several experimental model viruses for human pathogenic viruses, including porcine parvovirus (PPV), human hepatitis A virus (HAV), murine encephalomyocarditis virus (EMCV), bovine viral diarrhoea virus (BVDV), and bovine herpes virus (BHV). Non-enveloped viruses (PPV, HAV, and EMCV) as well as enveloped viruses (BVDV and BHV) were completely removed during filtration. The log reduction factors achieved were $\geq$4.86 for PPV, $\geq$4.60 for HAV, $\geq$6.87 for EMCV, $\geq$4.60 for BVDV, and $\geq$5.44 for BHV. These results indicate that the virus filtration process successfully improved the viral safety of the final products.

Effect of virus infectivity titer following centrifugation and filtration during virus extraction from fish samples

  • Kim, Wi-Sik;Kim, Jong-Oh;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.28 no.2
    • /
    • pp.113-116
    • /
    • 2015
  • A $0.45-{\mu}m$ membrane filter is generally used to remove bacterial contamination during virus extraction from fish samples. However, the number of fish viruses is drastically reduced after filtration with a $0.45{\mu}m$ filter. In this study, we investigated the effect of filters on virus infectivity titer and the change in virus titer and bacterial number following different centrifugation conditions to determine a suitable procedure for virus extraction from fish samples. $10^{4.05}$ and $10^{5.05}TCID_{50}/ml$ of infectious hematopoietic necrosis virus (IHNV) and $10^{4.05}$ and $10^{4.55}TCID_{50}/ml$ of Oncorhynchus masou virus (OMV) were not detectable after filtration with two types of $0.45-{\mu}m$ filters, except the IHNV titer was reduced by about 10 fold after filter use (company A). No significant difference was found in the virus titer following centrifugation at $880{\times}g$ (30 min) or $3,500{\times}g$ (30 min), whereas IHNV and OMV titers were reduced by about 10 and 10-1000 fold by centrifugation at $14,000{\times}g$ (30 min) and $14,000{\times}g$ (10 and 30 min), respectively. A total of 97.7-99.9% Escherichia coli were eliminated by centrifugation at $880 {\times}g$ (30 min) and $3,500{\times}g$ (30 min). These results show that fish viruses were affected by filtering, even though the effect differed by virus species and filter type. Therefore, centrifugation at $3,500{\times}g$ (30 min) and use of medium with antibiotics may be useful for virus extraction along with a reduction in bacteria.

Removal of Virus in Home Drinking Water Treatment Systems (가정용 정수시스템의 바이러스 제거)

  • 김영진;오남순;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.45-48
    • /
    • 2000
  • Reverse osmosis filtration(RO) system and ultrafiltration(UF) system are principally use for domestic home drinking water treatment systems. The object of this study is to make a comparison between two systems in terms of theirs abilities to remove RNA coilphage QB as an indicator of pathogenic enteroviruses. The virus removal ratio of RO system was 99.999%, which was higher than EPA virus treatment guideline(99.99%). In the course of filtration, removal ratios of sediment filter, pre-carbon filter, reverse osmosis membrane and post-carbon filter were 75.000%, 93.208%, 99.997% and 99.999%, repectively. In case of UF system, virus removal ratio was 99.708%. Removal ratios of sediment filter, pre-carbon filter, post-carbon filter and ultrafiltration membration membrane were 71.038%, 91.530%, 98.283% and 99.708%, respecively, in UF steps. Therefore, RO system is more effective than UF system in virus removal.

  • PDF

Comparisons of Certification Standards for Mask and Review on Filtration Efficiency for Viruses (마스크의 인증기준 비교와 바이러스 여과효율에 대한 고찰)

  • Yoon, Chungsik;Go, Sulbee;Park, Jihoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.109-123
    • /
    • 2020
  • Objectives: The aims of this study were to review the standards and key components of the standards for disposable masks in Korea, the US, EU, Japan, and China and to evaluate the appropriateness of disposable masks during a virus pandemic. Methods: We reviewed the standards in the above countries and compared their key elements for each standard. For the second purpose, systemic paper gathering using key words like 'mask', 'respirator' 'virus', and 'coronavirus' in the PubMed search engine was performed. Fifty-three papers were selected and reviewed in regard to the appropriateness of test protocols with sodium chloride(NaCl) particles for virus filtration and the effectiveness against viruses. Results: The standards for masks are largely divided into two categories: US standards and EU standards. In Korea, the Ministry of Employment and Labor adapted the EU standards for workers and the Health Masks adopted the Ministry of Employment and Labor standards by the Ministry of Food and Drug Safety. Regarding airborne viral infections, WHO emphasizes only droplet infection, while many studies have shown that small particles enter the air through coughing or sneezing, which increases the possibility of airborne infection. Compared to other particles, various factors such as airborne viability and the ability to replicate the virus in the body are further involved in the virus's airborne infection rate. Airborne infection is classified into absolute air infection, preferential air infection, and opportunistic air infection. The NaCl-certified N95 mask showed good filtration efficiency against viruses and NaCl particles were proved to be a surrogate material for viruses. From this, KF94 is also expected to be effective in blocking viruses. Conclusion: The N95 test method could be used as a surrogate test method for virus filtration. N95-class masks have been found to effectively block viral infections in the air. However, surgical or medical masks are only partially effective against airborne virus infection though they could effectively block large droplet infection. However, most studies considered in this study targeted N95 in foreign countries and studies on masks actually used in Korea are very limited, so studies on microorganisms and reuse on domestic masks should be conducted in the future.

Titer Amplification of GALV (Gibbon Ape Leukemia Virus) Pseudotyped Retrovirus Vectors Produced from PG13 Cells (PG13 Cell로부터 생산된 GALV (Gibbon Ape Leukemia Virus)-pseudotyped Retrovirus Vector의 증폭)

  • 김태완;박윤엽;권모선;염행철;김경화;박영식;박세필
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.4
    • /
    • pp.397-403
    • /
    • 1997
  • For the ultimate goal of efficient retrovirus vector-mediated transgenic animal production, we tried to increase virus titer by employing three methods: boosting virus production by treating virus-producing cells with sodium butyrate, concentration of virus stock by either filtration or ultracentrifugation. Compared to the control, applications of sodium butyrate (5 mM) treatment and filtration resulted in only 3 and 3. 6 folds of titer increases on bovine EBTr target cells, respectively. However, concentration of virus-containing medium by ultracentrifugation showed 12.5 folds of titer increase compared to the control (10${\times}$10$^5$ LacZ$^+$ TU Im), indicating the best method which can enhance retrovirus vector-mediated transgenic animal production.

  • PDF

Enhanced Virus Removal by Flocculation and Microfiltration

  • Han Binbing;Carlson Jonathan O.;Powers Scott M.;Wickramasinghe S. Ranil
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.6-9
    • /
    • 2002
  • In this work we have investigated the feasibility of virus clearance by flocculation and tangential flow microfiltration. Chinese hamster ovary cell feed streams were spiked with minute virus of mice and then flocculated using cationic polyelectrolytes prior to tangential flow microfiltration. Our results indicate that flocculation prior to microfiltration leads to more than 100 fold clearance of minute virus of mice particles in the permeate. Today, validation of virus clearance is a major concern in the manufacture of biopharmaceutical products. Frequently new unit operations are added simply to validate virus clearance thus increasing the manufacturing cost. The results obtained here suggest that virus clearance can be obtained during tangential flow microfiltration. Since tangential flow microfiltration is frequently used for bioreactor harvesting this could be a low cost method to validate virus clearance.

Removal and Inactivation of Hepatitis A Virus during Manufacture of Urokinase from Human Urine

  • Kim, In-Seop;Park, Yong-Woon;Lee, Sung-Rae;Yong Kang;Lee, Kyung-Myung;Park, Dae-Han;Woo, Han-Sang;Lee, Soungmin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.340-346
    • /
    • 2002
  • The purpose of the present study was to examine the efficacy and mechanism of the PAB (para-amino benzamidine) affinity column chromatography, Viresolve NFP virus filtration, pasteurization (60$\^{C}$ heat treatment for 10 h), and lyophilization steps employed in the manufacture of urokinase from human urine as regards the removal and/or inactivation of the hepatitis A virus (HAV). Samples from the relevant stages of the production process were spiked with HAV and subjected to scale-down processes mimicking the manufacture of urokinase Samples were collected at each step, immediately titrated using a 50% tissue culture infectious dose (TCID$\_$50/), and the virus reduction factors evaluated. PAB chromatography was found to be an effective step for removing HAV with a log reduction factor of 3.24. HAV infectivity was rarely detected in the urokinase fraction, while most of the HAV infectivity was recovered in the unbound and wash fractions. HAV was completely removed during the Viresolve NFP filtration with a log reduction factor of $\geq$ 4.60. Pasteurization was also found to be an effective step in inactivating HAV where the titers were reduced from an initial titer of 7.18 log$\_$10/ TCID$\_$50/ to undetectable levels within 10 h of treatment. The log reduction factor achieved during pasteurization was $\geq$ 4.76. Lyophilization revealed the lowest efficacy for inactivating HAV with a log reduction factor of 1.48. The cumulative log reduction factor was $\geq$ 14.08. Accordingly, these results indicate that the production process for urokinase exhibited a sufficient HAV reducing capacity to achieve a high margin of virus safety.

Filtration Efficiencies of Commercial Face Masks in Korea for Biological Aerosols (국내 출시 마스크의 바이오에어로졸 여과효율 평가)

  • Choi, Sueun;Choi, Doseon;Jang, Sung Jae;Park, SungJun;Yoon, Chungsik;Lee, Kiyoung;Ko, GwangPyo;Lee, Cheonghoon
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.2
    • /
    • pp.116-122
    • /
    • 2022
  • Background: The recent COVID-19 pandemic is one of the worst disease outbreaks of the 21th century. Due to a lack of reliable antiviral therapeutics, wearing face masks is recommended to prevent airborne infection originating from virus-contaminated bioaerosols. Objectives: The aim of this study was to evaluate the filtration efficiencies of face masks that are commercially available in South Korea for a biological aerosol of Staphylococcus aureus (S. aureus) and murine coronavirus, a well-known surrogate for human coronaviruses. Methods: We collected six different kinds of commercial masks: two Korea Filter (KF)94 (KF94-1, KF94-2) masks, one surgical (Surgical-1) mask, one anti-droplet (KF-AD-1) mask, and two dust (Dust-1, Dust-2) face masks. S. aureus (ATCC 6538), a well-performing test bacteria and murine coronavirus (ATCC VR-764) were prepared under a suitable culture condition. Then, a mask biological filtration tester was used to examine the microbial filtration efficiencies of masks. Test microorganisms were quantitatively measured via cultivation methods and microbial filtration efficiencies were calculated appropriately. Results: All face masks showed over 99.6% filtration efficiency for S. aureus or murine coronavirus. There were no significant differences among the bacterial filtration efficiencies of the face masks. KF94-1 (99.97±0.08%) and Dust-1 mask (99.97±0.07%) showed the highest (over 99.9%) filtration efficiency for murine coronavirus. KF94-1 or Dust-1 masks showed a significant virus filtration efficiency compared to Surgical-1 mask (p<0.05; Mann-Whitney U test). Conclusions: All the commercially available face masks used in this study can filter S. aureus or murine coronavirus in bioaerosols efficiently, regardless of the mask type. Therefore, our results suggest that wearing a certified face mask is a reliable means to prevent the transmission of infectious airborne diseases via biological aerosols.

Development of Techniques for Evaluating the Virus Removal Rate using Adenovirus (아데노바이러스를 이용한 바이러스 제거율 평가를 위한 기법 개발)

  • Cho, Yoonjung;Lim, Jaewon;Baek, Dawoon;Lee, Sang-Hoon;Lee, In-Soo;Lee, Hyeyoung;Park, Donghee;Jung, Dongju;Kim, Tae Ue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.6
    • /
    • pp.633-641
    • /
    • 2015
  • Waterborne infectious disease is induced by several pathogenic microbes such as bacteria, viruses and protozoans, and the cases caused by viral infection is currently increasing. Water treatment process could reduce the number of virus in the water, but there were many difficulties to completely remove the virus particles from water. Therefore, the membrane separation technology which was reported to effectively remove pollutants from raw water has attracted increasing attention and demand. Since its efficiency has been introduced, demands for evaluation method toward the membrane filtration process are increasing. However, progression of the method development is slow due to the difficulties in cultivation of several waterborne viruses from animal models or cell culture system. To overcome the difficulties, we used adenovirus, one of the commonly isolated pathogenic waterborne viruses which can grow in cell culture system in vitro. The adenovirus used in this study was identified as human adenovirus C strain. The adenovirus was spiked in the raw water and passed through the microfiltration membrane produced by Econity, a Korean membrane company, and then the viral removal rate was evaluated by real-time PCR. In the results, the amount of virus in the filtered water was decreased approximately by 5 log scale. Because coagulant treatment has been known to reduce filtering function of the membrane by inducing fouling, we also investigated whether there was any interference of coagulant. In the results, we confirmed that coagulant treatment did not show significant interference on microfiltration membrane. In this study, we found that waterborne virus can be effectively removed by membrane filtration system. In particular, here we also suggest that real-time PCR method can rapidly, sensitively and quantitatively evaluate the removal rate of virus. These results may provide a standard method to qualifying membrane filtration processes.