• Title/Summary/Keyword: virtual wheel

Search Result 66, Processing Time 0.03 seconds

Structural Characteristic Analysis of a High-Precision Centerless Grinding Machine with Concrete-Filled Bed (콘크리트 층진 베드를 적용한 초정밀 무심 연삭기의 구조 해석)

  • Kim Seok Il;Cho Jae Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.172-179
    • /
    • 2005
  • A high-precision centerless grinding machine has been recognized as a core equipment performing the finish outer-diameter grinding process of ferrules which are widely used as fiber optic connectors. In this study, in order to realize the high-precision centerless grinding machine, the structural characteristic analysis and evaluation are carried out on the virtual prototype consisted of the steel bed, hydrostatic GW and RW spindle systems, hydrostatic RW feed mechanism, RW swivel mechanism, and on-machine GW and RW dressers. The loop stiffnesses of centerless grinding machine are estimated based on the relative deformations between GW and RW caused by the grinding forces. And the simulated results illustrate that the concrete-filled bed has the considerable effect on the improvement of the structural stiffness of centerless grinding machine.

Impact of the Fidelity of Interactive Devices on the Sense of Presence During IVR-based Construction Safety Training

  • Luo, Yanfang;Seo, JoonOh;Abbas, Ali;Ahn, Seungjun
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.137-145
    • /
    • 2020
  • Providing safety training to construction workers is essential to reduce safety accidents at the construction site. With the prosperity of visualization technologies, Immersive Virtual Reality (IVR) has been adopted for construction safety training by providing interactive learning experiences in a virtual environment. Previous research efforts on IVR-based training have found that the level of fidelity of interaction between real and virtual worlds is one of the important factors contributing to the sense of presence that would affect training performance. Various interactive devices that link activities between real and virtual worlds have been applied in IVR-based training, ranging from existing computer input devices (e.g., keyboard, mouse, joystick, etc.) to specially designed devices such as high-end VR simulators. However, the need for high-fidelity interactive devices may hinder the applicability of IVR-based training as they would be more expensive than IVR headsets. In this regard, this study aims to understand the impact of the level of fidelity of interactive devices in the sense of presence in a virtual environment and the training performance during IVR-based forklift safety training. We conducted a comparative study by recruiting sixty participants, splitting them into two groups, and then providing different interactive devices such as a keyboard for a low fidelity group and a steering wheel and pedals for a high-fidelity group. The results showed that there was no significant difference between the two groups in terms of the sense of presence and task performance. These results indicate that the use of low-fidelity interactive devices would be acceptable for IVR-based safety training as safety training focuses on delivering safety knowledge, and thus would be different from skill transferring training that may need more realistic interaction between real and virtual worlds.

  • PDF

Virtual Reality Game Modeling for a Haptic Jacket

  • Bae, Hee-Jung;Jang, Byung-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.882-885
    • /
    • 2003
  • In this paper, we describe a haptic jacket and wheel as a haptic interface to enhance VR game realism. Building upon the VR game system using this devices, our haptic interface technique allows the user to intuitive interact on game contents, and then to sense the game event properties such as walking, attacking, driving and fire in a natural way. In addition, we extended the initial haptic model to support haptic decoration and dynamic interactions due to the added game event in a real time display. An application example presented here is a VR Dino-Attack game. This game supports interactions among dynamic and our intuitive haptic interface. Modeling physic interactions involves precise collision detection, real-time force computation, and high control-loop bandwidth.

  • PDF

Cancellation of Moving Artifact in EDA Signal to Detect Drowsiness(II) (졸음 검출을 위한 EDA신호의 동잡음 제거법(II))

  • 고한우;김연호
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.323-329
    • /
    • 1999
  • This paper proposed a method for the cancellation of the moving artifact which was produced during the detection of drowsiness usmg electrodermal activity signal. Two types of wrist electrode were developed to overcome the defect of the steering wheel type electrode which couldn't eliminate the moving artifacts due to driver's movements. Wrist type electrode II which has been modified from electrode type I was most effective for eliminating movmg artifacts compared to wheel type electrode and wrisL type electrode 1. The decIsion criteria(if IRI$\leq$10 and 1.1$\leq$dNz) for detecting moving artifact was determined from the virtual driving experiments. An algorithm which substituted past value of Nz for the current value of Nz whenever an EDA signal satisfied the criteria was developed. The experimental resulls of virtual driving and road test showed that the proposed algorithm had been successfully removed the most of the error due to the moving artifact Therefore, the developed system which use electrode type II and the algorithm might be less influenced by moving artifacts and could measure an accurate arousal state.

  • PDF

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 열 특성 해석)

  • Kim S.I.;Cho J.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.90-95
    • /
    • 2005
  • To perform the finish outside-diameter grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed, has very stable thermal characteristics.

  • PDF

Development of the Virtual Driving Environment for the AWS ECU Test Platform of the Bi-modal Tram (저상굴절 궤도차량의 AWS ECU 테스트 플랫폼을 위한 가상 주행환경 개발)

  • Choi, Seong-Hoon;Park, Tea-Won;Lee, Soo-Ho;Moon, Kyung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.283-290
    • /
    • 2007
  • A bi-modal tram has been developed to offer an advanced transportation service compared with existing vehicles. The All-Wheel-Steering system is applied to the bi-modal tram to satisfy the required steering performance because the bi-modal tram has extended length and articulated mechanism. An ECU for the steering system is essential to steer wheels on 2nd and 3rd axles by the specific AWS algorithm with the prescribed driving condition. The Hardware-In-the-Loop Simulation(HILS) system is planned for the purpose of evaluating the steering system of the bi-modal tram. There are kinematic links with the hydraulic actuator to steer wheels on each 2nd and 3rd axles and also same steering mechanism as the actual vehicle is in the HILS system. Controlling the movement of hydraulic actuator which reflects the lateral steering reaction force on each wheel is the key to realize the HILS system, but the reaction force is continuously changed according to various driving conditions. Therefore, the simulation through the multi-body dynamics model is used to obtain the required forces.

  • PDF

Study on the Dynamic Balance of the Power-tiller Plow System (동력경운기 Plow System의 역학적 평행개선에 의한 연구)

  • 송현갑
    • Journal of Biosystems Engineering
    • /
    • v.5 no.2
    • /
    • pp.26-39
    • /
    • 1980
  • A study was investigated to find out the mechanical optimum conditions of power tiller-plow system on both paddy field and upland. Mathematical model was developed for the theoretical analysis of this system and the experimentation on the field was carried out with two different sizes of 5PS and 8PS power tiller equipped with rubber tire. 1) The relationship between the plowing depth and draft resistance of the power tiller-plow system was a quadratic function. 2) The minimum point of the specific draft resistance of the 5 PS plow was found at the smaller plowing depth than that of 8 PS plow, therefore we can find that the curved surface of 5PS plow bottom should be improved for the effective plowing operation. 3) As the improvement of the mechanical balance by the desirable change of the curved surface of plow bottom, the relative position of hitch point and dimension of plow beam would be realized, the 5 PS power tiller could be used to plow deeply (about 16-17cm). 4) The virtual acting point of the total draft resistance on the plow bottom approached to the land side as the plowing depth increased. 5) The resultant of vertical reaction force $R_2$ on the landside was increased with the plowing depth, while the vertical reaction force $R_1$ on the wheel was decreased as the slope angle of the body of power tiller increased. 6) For the effective plowing operations ; a) The slope angle of the body should be as small as possible. b) The diameter of the wheel should be as small possible. c) The horizontal and vertical distances $l_2, h_1$ between the wheel axis and plow bottom should be as large as possible. 7) To use the 5PS power tiller as the major unit of agricultural machinery, the curved surface of the 5 PS plower bottom and the mechanism of attachment between the power tiller and the plow should be changed as the indications of this study, and in addition to these, the new operation method of the field work should be developed.

  • PDF

A Study on HMI Assessment of Joystick Driving System Using the Physiological Signal Measurement Method (생리신호 측정기법을 이용한 Joystick 운전방식의 HMI 평가연구)

  • Kim, Bae-Young;Koo, Tae-Yun;Bae, Chul-Ho;Park, Jung-Hoon;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2010
  • Recently, the vehicle driving device has been designed for driver's convenience. Especially, the automobile industry develops the vehicle using the joystick instead of steering wheel from the concept car. The biggest strength of using the joystick is that the driver feels less workload and fatigue than when the driver uses steering wheel. However, this kind of study still needs more research and experiments for more accurate result. Therefore, this research evaluated workload according to the driving device by the survey and the measurement of physiological signal. The reason not only using the survey also using the measurement of physiological signal is to support the result of the survey which is not enough to bring the accurate result. There were tow different kinds of methods to carry out this research; SWAT (Subjective Workload Assessment Technique) for the survey and the biopac equipment for the measurement of physiological signal. Furthermore, previously established driving simulator, GPS (Global Positioning System), and Seoul-Cheonan virtual expressway DB were used for the experiment. As the result of the experiment with 13 subjects, it was certain that using joystick device brings less workload and fatigue to the drivers than using steering wheel following both methods-the survey and the measurement of physiological signal. Also, it confirmed the significant result from the SPSS (Statistical Package for the Social Sciences) statistics analysis program.

Development and Verification of the Steering Algorithm for Articulated Vehicles (굴절차량에 대한 조향알고리즘 개발 및 검증)

  • Moon, Kyeong-Ho;Lee, Soo-Ho;Mok, Jai-Kyun;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • AWS (all wheel steering) is applied to improve the stability and the turning performance. Most automotive cars are mainly controlled by FWS (front wheel steering) system except some cars which are made to improve their stability by using AWS. Articulated vehicles with a pivoting joint for easy turn are difficult to make a sharp turn because of the long body and long wheelbase. Therefore applying AWS to the articulated vehicles is effective to reduce the turning radius. The AWS control method for the articulated vehicles is currently applied to only Phileas vehicles which were developed by APTS. The paper on the design of a controller to guide an articulated vehicle along the path was published but control algorithm for manual driving has not been reported. In the present paper, steering, characteristics of the Phileas vehicles have been analyzed and then new algorithm has been proposed. To verify the AWS algorithm, Commercial S/W, ADAMS was used for validity of the dynamic model and algorithm.