• Title/Summary/Keyword: virtual surgery

Search Result 153, Processing Time 0.034 seconds

Analytical Osteotomy Model for Three-dimensional Surgical Planning of Opening Wedge High Tibial Osteotomy (개방형 근위경골절골술의 3차원 수술계획을 위한 절골해석모델)

  • Koo, Bon-Yeol;Park, Byoung-Keon;Choi, Dong-Kwon;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.6
    • /
    • pp.385-398
    • /
    • 2013
  • Opening wedge high tibial osteotomy (OWHTO) is widely used to treat unicompartmental osteoarthritis of the knee caused by degenerative deformations of the anatomical axes of the leg. However, since it is difficult to accurately plan the surgical degrees of adjustment such as coronal correction angle and tibial posterior slope angle to align the axes before the actual procedure, a number of studies have proposed analytical models to solve this problem. While previous analytical models for OWHTO were limited to specific cases, this study proposes an analytical osteotomy model (AOM) and a surgical planning system (SPS) that are suitable for a wide range of tibial morphologies and tibia conditions. The validity and generality of the model were verified in a total of 60 OWHTO cases. Results of the test showed that, as predicted, surgical degrees are affected quite significantly by tibia shape and slope of the resected surface. Comparison of the required surgical degrees and the degrees estimated from virtual surgery simulations using AOM showed a very small average difference of $0.118^{\circ}$. SPS, based on AOM, allows the operating surgeon to easily calculate surgical parameters needed to treat a patient.

Data Recovery of 3D Polygonal Mesh Model (Polygonal Mesh로 표현된 3차원 모델의 에러복원 연구)

  • Kim Dai-yong;Ryu Dae-ha;Park Sung-won;Kim Mi-ja;Jang Euee S.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.23-26
    • /
    • 2003
  • 3차원 Polygonal Mesh는 그래픽스, 에니메이션, 게임에서 3차원 객체에 대한 표현에 사용되고, 이러한 3차원 모델에 대한 IndexedFaceSet 노드에 3차원 정전정보와 연결정보를 압축하는데 MPEG-4 3DMC를 사용한다. 이러한 연결정보는 다각형의 Mesh 형태로 3차원 모델을 구성하는 정보를 갖는데, 이는 Tepological Surgery 라고 하는 방법을 통해서 2차원의 스트립 단위의 데이터로 분해된다. 이러한 3D 데이터는 방송환경과 같은 재전송이 불가능한 네트워크의 환경에서 유무선 네트워크 상에서 채널문제로 인해서 데이터의 손실이 있게 되면, 복호화 된 데이터는 데이터의 손상이 발생하게 된다. 이러한 현상은 3D 모델의 좌표의 연결정보에 손상을 주게 되고, 여기서 복호화 된 데이터는 스트립 단위로 손상이 발생하게 된다. 이러한 현상은 3차원 모델의 좌표의 연결정보에 손상을 주게 된다. 본 논문은 이러한 3차원 정보의 손상을 효과적으로 복원하기 위한 연구에 관한 것이며, Mesh의 면을 이루는 각 꼭지점의 좌표들의 연결 정보가 손실되지 않는 스트립에서는 약간의 차이는 있을 수 있으나, 완벽한 복원을 하였고, 두 개 이상의 스트립이 붙어서 손상된 경우나, 좌표의 연결 정보가 없는 경우에는 조건에 따라 현저히 좋은 격과를 얻을 수 있었다.

  • PDF

Three-dimensional morphometric analysis of facial units in virtual smiling facial images with different smile expressions

  • Hang-Nga Mai;Thaw Thaw Win;Minh Son Tong;Cheong-Hee Lee;Kyu-Bok Lee;So-Yeun Kim;Hyun-Woo Lee;Du-Hyeong Lee
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • PURPOSE. Accuracy of image matching between resting and smiling facial models is affected by the stability of the reference surfaces. This study aimed to investigate the morphometric variations in subdivided facial units during resting, posed and spontaneous smiling. MATERIALS AND METHODS. The posed and spontaneous smiling faces of 33 adults were digitized and registered to the resting faces. The morphological changes of subdivided facial units at the forehead (upper and lower central, upper and lower lateral, and temple), nasal (dorsum, tip, lateral wall, and alar lobules), and chin (central and lateral) regions were assessed by measuring the 3D mesh deviations between the smiling and resting facial models. The one-way analysis of variance, Duncan post hoc tests, and Student's t-test were used to determine the differences among the groups (α = .05). RESULTS. The smallest morphometric changes were observed at the upper and central forehead and nasal dorsum; meanwhile, the largest deviation was found at the nasal alar lobules in both the posed and spontaneous smiles (P < .001). The spontaneous smile generally resulted in larger facial unit changes than the posed smile, and significant difference was observed at the alar lobules, central chin, and lateral chin units (P < .001). CONCLUSION. The upper and central forehead and nasal dorsum are reliable areas for image matching between resting and smiling 3D facial images. The central chin area can be considered an additional reference area for posed smiles; however, special cautions should be taken when selecting this area as references for spontaneous smiles.

Neurosurgical Management of Cerebrospinal Tumors in the Era of Artificial Intelligence : A Scoping Review

  • Kuchalambal Agadi;Asimina Dominari;Sameer Saleem Tebha;Asma Mohammadi;Samina Zahid
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.6
    • /
    • pp.632-641
    • /
    • 2023
  • Central nervous system tumors are identified as tumors of the brain and spinal cord. The associated morbidity and mortality of cerebrospinal tumors are disproportionately high compared to other malignancies. While minimally invasive techniques have initiated a revolution in neurosurgery, artificial intelligence (AI) is expediting it. Our study aims to analyze AI's role in the neurosurgical management of cerebrospinal tumors. We conducted a scoping review using the Arksey and O'Malley framework. Upon screening, data extraction and analysis were focused on exploring all potential implications of AI, classification of these implications in the management of cerebrospinal tumors. AI has enhanced the precision of diagnosis of these tumors, enables surgeons to excise the tumor margins completely, thereby reducing the risk of recurrence, and helps to make a more accurate prediction of the patient's prognosis than the conventional methods. AI also offers real-time training to neurosurgeons using virtual and 3D simulation, thereby increasing their confidence and skills during procedures. In addition, robotics is integrated into neurosurgery and identified to increase patient outcomes by making surgery less invasive. AI, including machine learning, is rigorously considered for its applications in the neurosurgical management of cerebrospinal tumors. This field requires further research focused on areas clinically essential in improving the outcome that is also economically feasible for clinical use. The authors suggest that data analysts and neurosurgeons collaborate to explore the full potential of AI.

Assessment of risks for breast cancer in a flight attendant exposed to night shift work and cosmic ionizing radiation: a case report

  • Dong Joon Park;Sungkyun Park;Seong Won Ma;Hoekyeong Seo;Sang Gil Lee;Kyung-Eun Lee
    • Annals of Occupational and Environmental Medicine
    • /
    • v.34
    • /
    • pp.5.1-5.10
    • /
    • 2022
  • Background: Some epidemiological studies have estimated exposure among flight attendants with and without breast cancer. However, it is difficult to find a quantitative evaluation of occupational exposure factors related to cancer development individually in the case of breast cancer in flight attendants. That is, most, if not all, epidemiological studies of breast cancer in flight attendants with quantitative exposure estimates have estimated exposure in the absence of individual flight history data. Case presentation: A 41-year-old woman visited the hospital due to a left breast mass after a regular check-up. Breast cancer was suspected on ultrasonography. Following core biopsy, she underwent various imaging modalities. She was diagnosed invasive ductal carcinoma of no special type (estrogen receptor positive in 90%, progesterone receptor positive in 3%, human epidermal growth factor receptor 2/neu equivocal) with histologic grade 3 and nuclear grade 3 in the left breast. Neoadjuvant chemotherapy was administered to reduce the tumor size before surgery. However, due to serious chemotherapy side effects, the patient opted for alternative and integrative therapies. She joined the airline in January, 1996. Out of all flights, international flights and night flights accounted for 94.9% and 26.2, respectively. Night flights were conducted at least four times per month. Moreover, based on the virtual computer program CARI-6M, the estimated dose of cosmic radiation exposure was 78.81 mSv. There were no other personal triggers or family history of breast cancer. Conclusions: This case report shows that the potentially causal relationship between occupational harmful factors and the incidence of breast cancer may become more pronounced when night shift workers who work continuously are exposed to cosmic ionizing radiation. Therefore, close attention and efforts are needed to adjust night shift work schedules and regulate cosmic ionizing radiation exposure.

Visualization and Localization of Fusion Image Using VRML for Three-dimensional Modeling of Epileptic Seizure Focus (VRML을 이용한 융합 영상에서 간질환자 발작 진원지의 3차원적 가시화와 위치 측정 구현)

  • 이상호;김동현;유선국;정해조;윤미진;손혜경;강원석;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • In medical imaging, three-dimensional (3D) display using Virtual Reality Modeling Language (VRML) as a portable file format can give intuitive information more efficiently on the World Wide Web (WWW). The web-based 3D visualization of functional images combined with anatomical images has not studied much in systematic ways. The goal of this study was to achieve a simultaneous observation of 3D anatomic and functional models with planar images on the WWW, providing their locational information in 3D space with a measuring implement using VRML. MRI and ictal-interictal SPECT images were obtained from one epileptic patient. Subtraction ictal SPECT co-registered to MRI (SISCOM) was performed to improve identification of a seizure focus. SISCOM image volumes were held by thresholds above one standard deviation (1-SD) and two standard deviations (2-SD). SISCOM foci and boundaries of gray matter, white matter, and cerebrospinal fluid (CSF) in the MRI volume were segmented and rendered to VRML polygonal surfaces by marching cube algorithm. Line profiles of x and y-axis that represent real lengths on an image were acquired and their maximum lengths were the same as 211.67 mm. The real size vs. the rendered VRML surface size was approximately the ratio of 1 to 605.9. A VRML measuring tool was made and merged with previous VRML surfaces. User interface tools were embedded with Java Script routines to display MRI planar images as cross sections of 3D surface models and to set transparencies of 3D surface models. When transparencies of 3D surface models were properly controlled, a fused display of the brain geometry with 3D distributions of focal activated regions provided intuitively spatial correlations among three 3D surface models. The epileptic seizure focus was in the right temporal lobe of the brain. The real position of the seizure focus could be verified by the VRML measuring tool and the anatomy corresponding to the seizure focus could be confirmed by MRI planar images crossing 3D surface models. The VRML application developed in this study may have several advantages. Firstly, 3D fused display and control of anatomic and functional image were achieved on the m. Secondly, the vector analysis of a 3D surface model was defined by the VRML measuring tool based on the real size. Finally, the anatomy corresponding to the seizure focus was intuitively detected by correlations with MRI images. Our web based visualization of 3-D fusion image and its localization will be a help to online research and education in diagnostic radiology, therapeutic radiology, and surgery applications.

  • PDF

The location of locoregional recurrence in pathologic T3N0, non-irradiated lower rectal cancer

  • Kim, Mi Sun;Keum, Ki Chang;Rhee, Woo Joong;Kim, Hyunju;Kim, Minji;Choi, Seohee;Nam, Ki Chang;Koom, Woong Sub
    • Radiation Oncology Journal
    • /
    • v.31 no.2
    • /
    • pp.97-103
    • /
    • 2013
  • Purpose: To investigate the patterns of locoregional recurrence of pathologic T3N0 (pT3N0) lower rectal cancer omitting postoperative radiotherapy (RT) and explore the potential of modification of a RT field. Materials and Methods: From Jan 2003 to Nov 2011, 35 patients omitting preoperative or postoperative RT for pT3N0 lower rectal cancer were included. We defined the lower rectal cancer as the tumor with the inferior margin located below the virtual line-a convergent level between rectal wall and levator ani muscle. All patients had radiologic examinations for recurrence evaluation during the follow-up duration. Results: The median follow-up duration was 66.4 months (range, 1.4 to 126.1 months). Eight (22.9%) of the 35 patients had recurrence. Three (8.6%) was local recurrence (LR) only, 3 (8.6%) was distant metastasis (DM) only, and 2 (5.7%) was LR with DM. All LR were located at primary tumor sites. The overall survival rate, LR-free survival rate, and DM-free survival rate at 5 years was 79.8%, 83%, and 87%, respectively. All LR developed from tumors over 5 cm. However, there was no statistical significance (p = 0.065). There was no other risk factor for LR. Conclusion: Even though the patients included in this study had pathologically favorable pT3N0 rectal cancer, LR developed in 14.3% of patients. Most of the LR was located at primary tumor sites prior to surgery. Based on these findings, it might seem reasonable to consider postoperative RT with a smaller radiation field to the primary tumor site rather than the conventional whole pelvic irradiation.

Structural Analysis for Constructing a Balloon Type Extracoporeal Membrane Oxygenator using CFD Analysis (CFD 해석을 이용한 Balloon형 인공심폐기 설계를 위한 구조적 해석)

  • Park, Young-Ran;Shim, Jeong-Yeon;Kim, Gi-Beum;Kim, Shang-Jin;Kang, Hyung-Sub;Kim, Jin-Shang;Kim, Min-Ho;Hong, Chul-Un;Kim, Seong-Jong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.238-243
    • /
    • 2011
  • In this study, we attempted a structural analysis in order to design a balloon type extracorporeal membrane oxygenator that can induce blood flow without using blood pumps for the purpose of complementing the weakness in the existing extracorporeal membrane oxygenator. To analyze the flow characteristic of the blood flow within the virtual model of extracorporeal membrane oxygenator, computational fluid dynamics(CFD) modeling method was used. The operating principle of this system is to make the surface of the extracorporeal membrane oxygenator keep contracting and dilating regularly by applying pressure load using a balloon, and the 'ime Function Value'that changes according to the time was applied by calculating a half cycle of sine waveform and a cycle of sine.waveform Under the assumption that the uni-directional blood flow could be induced if the balloon type extracorporeal membrane oxygenator was designed as per the method described above, we conducted a structural analysis accordingly. We measured and analyzed the velocity and pressure of blood flow at both inlet and outlet of the extracorporeal membrane oxygenator through CFD simulation. As a result of the modeling, it was confirmed that there was a flow in accord with the direction of the blood by the contraction/dilation. With CFD simulation, the characteristics of blood flow can be predicted in advance, so it is judged that this will be able to provide the most optimized design in producing an extracorporeal membrane oxygenator.

Improvement of a Planning Technique Based on Heuristic Target Shaping for Stereotactic Radiosurgery (방사선 수술시 경험적 표적 근사화에 근거한 최적화 방법 개선)

  • Oh Seungjong;Choi Kyoung-Sik;Song Ju-Young;Suh Tae-Suk
    • Progress in Medical Physics
    • /
    • v.16 no.4
    • /
    • pp.176-182
    • /
    • 2005
  • Stereotactic radiosurgery (SRS) is a technique to deliver a high dose to a target region and a low dose to a critical organ through only one or a few irradiation. The SRS must be planned exactly. Currently the surgery plan is peformed by trial and error method. There are many questions about the reliability and reproducibility of the plan result. This study Improve each step of the Oh's method based on heuristic target shaping to obtain the better result. The target was reconstructed using cylinders with same height and the neighbored cylinders were combined according to the difference of each center and diameter. Then, spheres were packed within each cylinders by the packing rules. Two virtual targets were used to compare this method with Oh's method. As a result, the numbers of isocenter were successfully reduced - more than $35\%$ and $26\%$ - without serious differences of proscription isodose to tumour volume ratio (PITV) and maximum dose to proscription dose ratio (MDPD). This technique using cylinder piling and sphere packing will be a helpful tool to planner in stereotactic radiosurgery.

  • PDF

Comparison of Linac-based VMAT Stereotatic Radiosurgery and Conventional Stereotatic Radiosurgery for Multiple Brain Lesions (Linac 기반 VMAT 정위적 수술 뇌 병변 연구와 기존의 정위적 방사선 수술 비교)

  • Jang, Eun-Sung;Chang, Bo-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.239-246
    • /
    • 2021
  • Portal Dosimetry was verified using EPID to secure the clinical application and reliability of the existing research dose evaluation. The dose distribution of Geant4 was compared with the measured value by 360° rotational irradiation with a 2.5 cm cone for stereotactic brain surgery. To confirm the dose distribution of patients with brain metastasis, the dose distribution investigated by inserting a Gafchromic EBT film into the parietal phantom and the dose distribution obtained from the parietal phantom using VMAT are compared and applied to actual patients. As a result of the analysis, it was confirmed that the accuracy of the beam center and the center of the couch coincide accurately with an error within 1mm as a result of QA through a pin ball. In addition, it was confirmed that the EBT3 film has excellent linearity in the range of 0 to 10 Gy according to various dose irradiation. In the same setting as the two cervical phantoms, we confirm that the implementation and simulation results calculations of dose calculations based on Geant4 using photon beams match the experimental data within the treatment planning volume (PTV). Therefore, volume modulated arc treatment (VMAT) 360° rotational irradiation was performed, and the result of iso-dose distribution analysis by rotational irradiation confirmed that it is appropriate to include a virtual tumor.