• Title/Summary/Keyword: virtual sensors

Search Result 256, Processing Time 0.024 seconds

Ballistocardiographical Heart Rate Measurement Using Head Mounted 6-axis Accelerometer (머리 착용형 6축 가속도계를 사용한 심탄도 심박수 측정)

  • Jinman Kim;Joongjin Kook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.33-37
    • /
    • 2024
  • Recently, wearable virtual reality devices are widely used. These instruments include a 3-axis accelerometer. User's heart rate information in virtual reality contents can be useful for measuring user experience. In this paper, we propose a method to measure the heart rate through a 3-axis accelerometer based on the principle of ballistocardiography without additional sensors. The angular velocity was successively measured in a time series by the 3-axis accelerometer mounted to the head. The frequency of the maximum magnitude is determined as the heart rate through frequency transform and band pass filtering of the time series signal. For verification, the heart rate calculated from photoplethysmography sensors acquired at the same time was compared as ground-truth. In the virtual reality, the user's heart rate information can be extracted without additional heart rate sensor, and the emotional state and fatigue can be measured.

  • PDF

Real-time obstacle avoidance for mobile robot (이동 로봇을 위한 실시간 충돌 회피)

  • 범희락;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.658-662
    • /
    • 1991
  • In this paper, a real-time obstacle avoidance for mobile robot based on the readings of the ultrasonic sensors is presented. The twenty eight ultrasonic sensors are arranged in ring and controlled by microprocessor. The readings of the ultrasonic sensor is converted into the virtual forces called repulsive forces, which are the elastic and damping forces. Then, the direction and speed of mobile robot in the cluttered environment are determined by the virtual forces. The effectiveness of the proposed method is verified from a series of simulation studies.

  • PDF

Designing Effective Virtual Training: A Case Study in Maritime Safety

  • Jung, Jinki;Kim, Hongtae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.385-394
    • /
    • 2017
  • Objective: The aim of this study is to investigate how to design effective virtual reality-based training (i.e., virtual training) in maritime safety and to present methods for enhancing interface fidelity by employing immersive interaction and 3D user interface (UI) design. Background: Emerging virtual reality technologies and hardware enable to provide immersive experiences to individuals. There is also a theory that the improvement of fidelity can improve the training efficiency. Such a sense of immersion can be utilized as an element for realizing effective training in the virtual space. Method: As an immersive interaction, we implemented gesture-based interaction using leap motion and Myo armband type sensors. Hand gestures captured from both sensors are used to interact with the virtual appliance in the scenario. The proposed 3D UI design is employed to visualize appropriate information for tasks in training. Results: A usability study to evaluate the effectiveness of the proposed method has been carried out. As a result, the usability test of satisfaction, intuitiveness of UI, ease of procedure learning, and equipment understanding showed that virtual training-based exercise was superior to existing training. These improvements were also independent of the type of input devices for virtual training. Conclusion: We have shown through experiments that the proposed interaction design results are more efficient interactions than the existing training method. The improvement of interface fidelity through intuitive and immediate feedback on the input device and the training information improve user satisfaction with the system, as well as training efficiency. Application: Design methods for an effective virtual training system can be applied to other areas by which trainees are required to do sophisticated job with their hands.

Design of Algorithms for Unnecessary Sensor Barrier in IoT Environment (IoT 환경에서 불필요한 센서 차단 알고리즘 설계)

  • Lim, Hyeok;Shin, Yun-Ho;Yu, Dong-Gyun;Ryu, Seung-Han;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.607-608
    • /
    • 2016
  • Recently using a variety of sensors sensing the virtual(Virtual Sensing) technology that extracts specific data has been applied to IoT service interface. The utilization of such sensors while increasing IoT (Internet of Things) environmental sensor is an essential element. However, used in the IoT to the environment, while the increase in utilization of a specific sensor utilization falling sensors is generated. In this paper, we design unnecessary sensors removal algorithm as a way to solve this problem. Through the utilization of poor power to block the sensor can reduce the power consumption and user sensor control service through the monitoring by blocking the use of the sensor is considered that there can be provided a more effective and convenient.

  • PDF

Development of Fire-Diagnosis Concrete using Composite Sensors (복합센서를 이용한 화재자현 콘크리트의 개발)

  • Choi, Young-Wha;Kim, Ie-Sung;Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.85-92
    • /
    • 2010
  • Use of concrete has undoubtedly become widespread in construction and civil engineering. Sensors are used to add functional characteristics to concrete. Self-diagnosis concrete is also being developed. The thermal protector used in the study is a sensor using the linear expansion and cubical expansion of metal. The LED(Light Emitting Diode) is a phototransistor type, and to secure high-sensitivity light, the prices of these sensors are low. Rising temperatures of concrete elements can be predicted from LED of the external virtual beam due to operation of thermal protector sensors of concrete beam caused by fire load on the concrete specimen. In this study, the development of fire-diagnosis concrete using composite sensors are the fundamental study for damage detection using simply measurements.

  • PDF

A Sensor Overlay Network Providing Middleware Services on Wireless Sensor Networks (무선 센서 네트워크에서 미들웨어 서비스를 제공하는 센서 오버레이 네트워크)

  • Kim, Yong-Pyo;Jung, Eui-Hyun;Park, Yong-Jin
    • The KIPS Transactions:PartC
    • /
    • v.16C no.5
    • /
    • pp.653-660
    • /
    • 2009
  • A research for middleware of WSN can provide sensor applications with avoiding tight coupling of hardware, ease of development, and abstract data access. However, previous works have some limitations which should install their own middleware onto the all sensor nodes resulting in computational and communication overhead. In order to address it, we proposed a virtual sensor overlay network, called TinyONet-Lite which introduced virtual sensors to model a virtual counterpart of physical sensors. These virtual sensors dynamically grouped into an overlay network, Slice, which provides middleware services. We implemented TinyONet-Lite on mote class hardware with TinyOS. In accordance with experiments and comparison with existing researches, TinyONet-Lite was proved to show advantages of extensibility, dynamic service composition and reducing overhead.

A Virtual Instrument Control System With Reconstruction Mechanism Of Faulty Signal (오류신호 보정기능을 가진 가상계측 제어시스템)

  • 정영수;현웅근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.311-314
    • /
    • 2003
  • This paper describes a virtual instrument system with faulty sensor reconstruction mechanism based on personal computer. This system consists of sensor control board using 16bit RISC machine, error signal reconstruction algorithm based on principal component analysis and auto tunned GUI interface according to the attached sensors. USB module is used for fast communication between PC and sensor controller. To show the veridity of the proposed system, the proposed system was applied to the developed sun tracker with 8 solar sensors.

  • PDF

A Prototype of Flex Sensor Based Data Gloves to Track the Movements of Fingers

  • Bang, Junseung;You, Jinho;Lee, Youngho
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.53-57
    • /
    • 2019
  • In this paper, we propose a flex sensor-based data glove to track the movements of human fingers for virtual reality education. By putting flex sensors and utilizing an accelerometer, this data glove allows people to enjoy applications for virtual reality (VR) or augmented reality (AR). With the maximum and minimum values of the flex sensor at each finger joint, it determines an angle corresponding to the bending value of the flex sensor. It tracks the movements of fingers and hand gestures with respect to the angle values at finger joints. In order to prove the effectiveness of the proposed data glove, we implemented a VR classroom application.

Improved Input Voltage Sensorless Control of Three-Phase AC/DC PWM PFC Converter using Virtual Flux Observer (가상자속관측기를 이용한 3상 AC/DC PWM PFC 컨버터의 입력전압 센서리스 제어 개선)

  • Kim, Young-Sam;So, Sang-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.566-574
    • /
    • 2013
  • In this paper, direct power control system for three-phase PFC AC/DC converter without the source voltage sensors is proposed. The sinusoidal input current and unity effective power factor are realised based on the estimated flux in the observer. Both active and reactive power calculated using estimated flux. The estimation of flux is performed based on the reduced-order virtual flux observer using the actual currents and the command control voltage. Moreover, source voltage sensors are replaced by a estimated flux. DC output voltage has been compensated by DC output ripple voltage estimation algorithm. The active and reactive powers estimation are performed based on the estimated flux and Phase angle. The proposed algorithm is verified through simulation and experiment.

Implementation of Device Driver for Virtual Machine Based-on Android (Android 가상머신을 위한 디바이스 드라이버 구현)

  • Kim, Ho-Sung;Seo, Jong-Kyoun;Park, Han-Su;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.1017-1023
    • /
    • 2015
  • The amount of smart phones has increased exponentially. Due to the periodic release of high-performance smart phones and upgraded operating system, new smart phones become out-dated over 1 or 2 years. In order to solve environmental constraints of these smart phones, virtualization technology using Thin-Client terminal has been developed. However, in the case of Virtual Machine(VM), the applications associated with sensors and a GPS device can not run because they are not included. In this paper, by implementing the device driver for Android running in a virtual machine in the x86-based systems, it is to provide Android virtualization capabilities such as using the latest smart phones in the virtual machine environment. It would like to propose a method that the virtual device driver receives sensors and GPS information from the old Android smart phones(Thin-Client) that actually work and run as if the real device exists.