• Title/Summary/Keyword: virtual plane

Search Result 183, Processing Time 0.023 seconds

In-vitro study on the accuracy of a simple-design CT-guided stent for dental implants

  • Huh, Young-June;Choi, Bo-Ram;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.42 no.3
    • /
    • pp.139-146
    • /
    • 2012
  • Purpose: An individual surgical stent fabricated from computed tomography (CT) data, called a CT-guided stent, would be useful for accurate installation of implants. The purpose of the present study was to introduce a newly developed CT-guided stent with a simple design and evaluate the accuracy of the stent placement. Materials and Methods: A resin template was fabricated from a hog mandible and a specially designed plastic plate, with 4 metal balls inserted in it for radiographic recognition, was attached to the occlusal surface of the template. With the surgical stent applied, CT images were taken, and virtual implants were placed using software. The spatial positions of the virtually positioned implants were acquired and implant guiding holes were drilled into the surgical stent using a specially designed 5-axis drilling machine. The surgical stent was placed on the mandible and CT images were taken again. The discrepancy between the central axis of the drilled holes on the second CT images and the virtually installed implants on the first CT images was evaluated. Results: The deviation of the entry point and angulation of the central axis in the reference plane were $0.47{\pm}0.27$ mm, $0.57{\pm}0.23$ mm, and $0.64{\pm}0.16^{\circ}$, $0.57{\pm}0.15^{\circ}$, respectively. However, for the two different angulations in each group, the $20^{\circ}$ angulation showed a greater error in the deviation of the entry point than did the $10^{\circ}$ angulation. Conclusion: The CT-guided template proposed in this study was highly accurate. It could replace existing implant guide systems to reduce costs and effort.

Using 3-dimensional digital smile design in esthetic restoration of anterior teeth: A case report (3차원 Digital Smile Design을 활용한 전치부 심미수복 증례)

  • Hong, Sungman;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.451-458
    • /
    • 2021
  • Currently, digital technology is being used in various fields of dental treatment. In particular, in the case of anterior esthetic restoration, the traditional restoration method cannot contain facial information and it is difficult for the patient to predict the treatment result. However, in the case of esthetic restoration through digital design, the visualization of the prosthesis design and the ease of reflecting patient feedback, and expecting the treatment result is available. In this case, the patient confirmed the results of restoration treatment using a digital method before treatment and obtained consent for treatment in an anterior tooth trauma patient. In addition, since the conventional digital smile design method uses only the patient's facial and smile information, the design was made on a two-dimensional plane, and its application was somewhat limited. However, in this case, a three-dimensional virtual patient was created and thus the designed restoration was viewed from various angles. Through this case, it was possible to obtain a high degree of satisfaction with the ease of communication with the patient and the technician during the esthetic restoration using the digital method, the simplicity of the procedure, and the treatment result.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.