• Title/Summary/Keyword: virtual images

Search Result 831, Processing Time 0.022 seconds

A Study on Virtual Reality Management of 3D Image Information using High-Speed Information Network (초고속 정보통신망을 통한 3차원 영상 정보의 가상현실 관리에 관한 연구)

  • Kim, Jin-Ho;Kim, Jee-In;Chang, Chun-Hyon;Song, Sang-Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3275-3284
    • /
    • 1998
  • In this paper, we deseribe a Medical Image Information System. Our system stores and manages 5 dimensional medical image data and provides the 3 dimensional medical data via the Internet. The Internet standard VR format. VRML(Virtual Reality Modeling Language) is used to represent the 3I) medical image data. The 3D images are reconstructed from medical image data which are enerated by medical imaging systems such ans CT(Computerized Tomography). MRI(Magnetic Resonance Imaging). PET(Positron Emission Tomograph), SPECT(Single Photon Emission Compated Tomography). We implemented the medical image information system shich rses a surface-based rendering method for the econstruction of 3D images from 2D medical image data. In order to reduce the size of image files to be transfered via the Internet. The system can reduce more than 50% for the triangles which represent the surfaces of the generated 3D medical images. When we compress the 3D image file, the size of the file can be redued more than 80%. The users can promptly retrieve 3D medical image data through the Internet and view the 3D medical images without a graphical acceleration card, because the images are represented in VRML. The image data are generated by various types of medical imaging systems such as CT, MRI, PET, and SPECT. Our system can display those different types of medical images in the 2D and the 3D formats. The patient information and the diagnostic information are also provided by the system. The system can be used to implement the "Tele medicaine" systems.

  • PDF

Analysis of Time, Duality, Difference, and Virtual Image in Partially Moving Image Cinemagraph

  • Kim, Young Il
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.191-196
    • /
    • 2019
  • Humans use images on a daily basis-so much so that images are integral to their lives. Seeing is represented by an image, created or lived in it. Images required and developed a new paradigm from past to present. Today, images are in digital formats, and new techniques are increasing. Among them, cinemagraphs can find features that differ from previous images. The keywords found by comparing them in the image development are analyzed in detail through four characteristics in this paper. Cinemagraphs appearing in the keywords are interpreted in terms of each keyword and, through the example, the cinemagraph image can be approached concretely.

Efficient Compression Schemes for Double Random Phase-encoded Data for Image Authentication

  • Gholami, Samaneh;Jaferzadeh, Keyvan;Shin, Seokjoo;Moon, Inkyu
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.390-400
    • /
    • 2019
  • Encrypted images obtained through double random phase-encoding (DRPE) occupy considerable storage space. We propose efficient compression schemes to reduce the size of the encrypted data. In the proposed schemes, two state-of-art compression methods of JPEG and JP2K are applied to the quantized encrypted phase images obtained by combining the DRPE algorithm with the virtual photon counting imaging technique. We compute the nonlinear cross-correlation between the registered reference images and the compressed input images to verify the performance of the compression of double random phase-encoded images. We show quantitatively through experiments that considerable compression of the encrypted image data can be achieved while security and authentication factors are completely preserved.

Study on the calibration phantom and metal artifacts using virtual monochromatic images from dual energy CT (듀얼 에너지 CT의 가상 단색 영상을 이용한 영상 교정 팬텀과 금속 인공음영에 관한 연구)

  • Lee, Jun seong;Lee, Seung hoon;Park, Ju gyung;Lee, Sun young;Kim, Jin ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Purpose: To evaluate the image quality improvement and dosimetric effects on virtual monochromatic images of a Dual Source-Dual Energy CT(DS-DECT) for radiotherapy planning. Materials and Methods: Dual energy(80/Sn 140 kVp) and single energy(120 kVp) scans were obtained with dual source CT scanner. Virtual monochromatic images were reconstructed at 40-140 keV for the catphan phantom study. The solid water-equivalent phantom for dosimetry performs an analytical calculation, which is implemented in TPS, of a 10 MV, $10{\times}10cm^2$ photon beam incident into the solid phantom with the existence of stainless steel. The dose profiles along the central axis at depths were discussed. The dosimetric consequences in computed treatment plans were evaluated based on polychromatic images at 120 kVp. Results: The magnitude of differences was large at lower monochromatic energy levels. The measurements at over 70 keV shows stable HU for polystyrene, acrylic. For CT to ED conversion curve, the shape of the curve at 120 kVp was close to that at 80 keV. 105 keV virtual monochromatic images were more successful than other energies at reducing streak artifacts, which some residual artifacts remained in the corrected image. The dose-calculation variations in radiotherapy treatment planning do not exceed ${\pm}0.7%$. Conclusion: Radiation doses with dual energy CT imaging can be lower than those with single energy CT imaging. The virtual monochromatic images were useful for the revision of CT number, which can be improved for target coverage and electron densities distribution.

  • PDF

GEOMETRY OF SATELLITE IMAGES - CALIBRATION AND MATHEMATICAL MODELS

  • JACOBSEN KARSTEN
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.182-185
    • /
    • 2005
  • Satellite cameras are calibrated before launch in detail and in general, but it cannot be guaranteed that the geometry is not changing during launch and caused by thermal influence of the sun in the orbit. Modem satellite imaging systems are based on CCD-line sensors. Because of the required high sampling rate the length of used CCD-lines is limited. For reaching a sufficient swath width, some CCD-lines are combined to a longer virtual CCD-line. The images generated by the individual CCD-lines do overlap slightly and so they can be shifted in x- and y-direction in relation to a chosen reference image just based on tie points. For the alignment and difference in scale, control points are required. The resulting virtual image has only negligible errors in areas with very large difference in height caused by the difference in the location of the projection centers. Color images can be related to the joint panchromatic scenes just based on tie points. Pan-sharpened images may show only small color shifts in very mountainous areas and for moving objects. The direct sensor orientation has to be calibrated based on control points. Discrepancies in horizontal shift can only be separated from attitude discrepancies with a good three-dimensional control point distribution. For such a calibration a program based on geometric reconstruction of the sensor orientation is required. The approximations by 3D-affine transformation or direct linear transformation (DL n cannot be used. These methods do have also disadvantages for standard sensor orientation. The image orientation by geometric reconstruction can be improved by self calibration with additional parameters for the analysis and compensation of remaining systematic effects for example caused by a not linear CCD-line. The determined sensor geometry can be used for the generation? of rational polynomial coefficients, describing the sensor geometry by relations of polynomials of the ground coordinates X, Y and Z.

  • PDF

Study on the Visual Characteristics and Subjectivity in the Live Action Based Virtual Reality (실사기반 가상현실 영상의 특징과 주체 구성에 대한 연구)

  • Jeon, Gyongran
    • Cartoon and Animation Studies
    • /
    • s.48
    • /
    • pp.117-139
    • /
    • 2017
  • The possibility of interactivity of digital media environment is adopted in human expression system and integrates the dynamic aspect of digital technology with expressive structure, thereby transforming the paradigm of image acceptance as well as image expression range. Virtual reality images have an important meaning in that they are changing the one-way mechanism of production and acceptance of images that lead to producers-video-audiences beyond the problem of verisimilitude such as how vividly they simulate reality. First of all, the virtual reality image is not one-sided but interactive image composed by the user. Viewing a virtual reality image does not just see the camera shine, but it gets the same view as in the real world. Therefore, the image that was controlled through framing changes to be configured positively by the user. This implies a change in the paradigm of image acceptance as well as a change in the existing form of the image itself. In addition, the narrative structure of the image and the subjects that are formed in the process are also required to be discussed. In the virtual reality image, the user 's gaze is a fusion of the gaze inside the image and the gaze outside the image. This is because the position of the user as the subject of the gaze in the virtual reality image is continuously restricted by the device of the discourse such as the editing and the narration of the shot. The significance of the virtual reality image is not aesthetically perfect but it is reconstructed according to the user to reflect the existence of the user positively and engage the user in the image.

Flying Cake: An Augmented Game on Mobile Device (Flying Cake: 모바일 단말기를 이용한 실감형 게임)

  • Park, An-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.79-94
    • /
    • 2007
  • In the ubiquitous computing age which uses a high quantity network, mobile devices such as wearable and hand-held ones with a small tamers and a wireless communication module will be widely used in near future. Thus, a lot of researches about an augmented game on mobile devices have been attempted recently. The existing augmented games used a traditional 'backpack' system and a pattern marker. The 'backpack' system is expensive, cumbersome and inconvenient to use, and because of the pattern marker, it is only possible to play the game in the previously installed palace. In this paper, we propose an augmented game called Flying Cake using a face region to create the virtual object(character) without the pattern marker, which manually indicates an overlapped location of the virtual object in the real world, on a small and mobile PDA instead of the cumbersome hardware. Flying Cake is an augmented shooting game. This game supplies us with two types: 1) a single player which attacks a virtual character on images captured by a camera in an outdoor physical area, 2) dual players which attack the virtual character on images which we received through a wireless LAN. We overlap the virtual character on the face region using a face detection technique, and users play Flying Cake though attacking the virtual character. Flying Cake supplies new pleasure to flayers with a new game paradigm through an interaction between the user in the physical world captured by the PDA camera and the virtual character in a virtual world using the face detection.

Acquisition of HDR image using estimation of scenic dynamic range in images with various exposures (다중 노출 복수 영상에서 장면의 다이내믹 레인지 추정을 통한 HDR 영상 획득)

  • Park, Dae-Geun;Park, Kee-Hyon;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.10-20
    • /
    • 2008
  • Generally, to acquire an HDR image, many images that cover the entire dynamic range of the scene with different exposure times are required, then these images are fused into one HDR image. This paper proposes an efficient method for the HDR image acquisition with small number of images. First, we estimated scenic dynamic range using two images with different exposure times. These two images contain the upper and lower limit of the scenic dynamic range. Independently of the scene, according to varied exposure times, similar characteristics for both the maximum gray levels in images that include the upper limit and the minimum gray levels in images that include the lower limit are identified. After modeling these characteristics, the scenic dynamic range is estimated using the modeling results. This estimated scenic dynamic range is then used to select the proper exposure times for the acquisition of an HDR image. We selected only three proper exposure times because entire dynamic range of the cameras could be covered by three dynamic range of the cameras with different exposure times. To evaluate the error of the HDR image, experiments using virtual digital camera images were carried out. For several test images, the error of the HDR image using proposed method was comparable to that of the HDR image which utilize more than ten images for the HDR image acquisition.

Virtual Dissection System of Cadaver Heart Using 3-Dimensional Image

  • Chung, Min-Suk;Lee, Je-Man;Kim, Min-Koo;Park, Seung-Kyu
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.357-360
    • /
    • 1997
  • For medical students and doctors, knowledge of the 3-dimensional (3D) structure of the heart is very important in diagnosis and treatment of the heart diseases. 2-dimensional (2D) tools (e.g. anatomy book) or classical 3D tools (e.g. plastic model) are not sufficient or understanding the complex structures of the heart. Moreover, it is not always guaranteed to dissect the heart of cadaver when it is necessary. To overcome this problem, virtual dissection systems of the heart have been developed. But these systems are not satisfactory since they are made of radiographs; they are not true 3D images; they can not be used to dissect freely; or they can only be operated on the workstation. It is also necessary to make the dissection systems incorporating the various races and tribes because of the organ's difference according to race and tribe. This study was intended to make the 3D image of the heart from a Korean cadaver, and to establish a virtual dissection system of the heart with a personal computer. The procedures or manufacturing this system were as follows. 1. The heart from a Korean adult cadaver was embedded with gelatin solution, and serially cross-sectioned at 1mm-thickness on a meat slicer. Pictures or 153 cross-sectioned specimens were inputted into the computer using a digital camera ($756{\times}504$ resolution, true color). 2. The alignment system was established by means of the language of IDL, and applied to align 2D images of the heart. In each of 2D images, closed curves lining clean and dirty blood pathways were drawn manually on the CorelDRAW program. 3. Using the language of IDL, the 3D image and the virtual dissection system of the heart were constructed. The virtual dissection system of the heart allowed or ree rotation, any-directional sectioning, and selected visualization of the heart's structure. This system is expected to become more advanced, and to be used widely through Internet or CD-title as an educational tool for medical students and doctors.

  • PDF

Virtual Target Overlay Technique by Matching 3D Satellite Image and Sensor Image (3차원 위성영상과 센서영상의 정합에 의한 가상표적 Overlay 기법)

  • Cha, Jeong-Hee;Jang, Hyo-Jong;Park, Yong-Woon;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1259-1268
    • /
    • 2004
  • To organize training in limited training area for an actuai combat, realistic training simulation plugged in by various battle conditions is essential. In this paper, we propose a virtual target overlay technique which does not use a virtual image, but Projects a virtual target on ground-based CCD image by appointed scenario for a realistic training simulation. In the proposed method, we create a realistic 3D model (for an instructor) by using high resolution Geographic Tag Image File Format(GeoTIFF) satellite image and Digital Terrain Elevation Data (DTED), and extract the road area from a given CCD image (for both an instructor and a trainee). Satellite images and ground-based sensor images have many differences in observation position, resolution, and scale, thus yielding many difficulties in feature-based matching. Hence, we propose a moving synchronization technique that projects the target on the sensor image according to the marked moving path on 3D satellite image by applying Thin-Plate Spline(TPS) interpolation function, which is an image warping function, on the two given sets of corresponding control point pair. To show the experimental result of the proposed method, we employed two Pentium4 1.8MHz personal computer systems equipped with 512MBs of RAM, and the satellite and sensor images of Daejoen area are also been utilized. The experimental result revealed the effective-ness of proposed algorithm.