• Title/Summary/Keyword: virtual disassembly process

Search Result 5, Processing Time 0.018 seconds

Virtual Disassembly

  • Mo, Jianzhong;Zhang, Qiong;Gadh, Rajit
    • International Journal of CAD/CAM
    • /
    • v.2 no.1
    • /
    • pp.29-37
    • /
    • 2002
  • De-manufacturing is an entire process of collecting, disassembling, reusing, refurbishing, recycling, and/or disposing products that are obsolete or un-repairable. Designing the products for inexpensive and efficient disassembly enhances the ease of de-manufacturing. Virtual disassembly addresses the difficulty and the methods to disassemble a product in design stage rather than really disassemble a product at the end of its life cycle. Based on the virtual disassembly analysis results, design will be improved for better assembling/disassembling. This paper presents a systematic virtual disassembly methodology such as disassembly relation modeling, path/sequence automatic generation and evaluation. This paper also presents a new virtual disassembly interface paradigm via virtual reality technology for disassembly simulation in virtual environment.

A Parallel Sequence Extraction Algorithm for Generating Assembly BOM (조립 BOM 생성을 위한 병렬순서 추출 알고리듬)

  • Yeo, Myung-Koo;Choi, Hoo-Gon;Kim, Kwang-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.49-64
    • /
    • 2003
  • Although assembly sequence planning is an essential task in assembly process planning, it is known as one of the most difficult and time consuming jobs because its complexity is increased geometrically when the number of parts in an assembly is increased. The purpose of this study is to develop a more efficient algorithm for generating assembly sequences automatically. By considering subassemblies, a new heuristic method generates a preferred parallel assembly sequence that can be used in robotic assembly systems. A parallel assembly sequence concept provides a new representation scheme for an assembly in which the assembly sequence precedence information is not required. After an user inputs both the directional mating relation information and the mating condition information, an assembly product is divided into subgroups if the product has cut-vertices. Then, a virtual disassembly process is executed to generate alternate parallel assembly sequences with intermediate assembly stability. Through searching parts relations in the virtual disassembly process, stable subassemblies are extracted from translation-free parts along disassembling directions and this extraction continues until no more subassemblies are existed. Also, the arithmetic mean parallelism formula as a preference criterion is adapted to select the best parallel assembly sequence among others. Finally a preferred parallel assembly sequence is converted to an assembly BOM structure. The results from this study can be utilized for developing CAAPP(Computer-Aided Assembly Process Planning) systems as an efficient assembly sequence planning algorithm.

Development of Maintenance Training System by Using Haptic Guidance (햅틱 안내를 이용한 가상 유지보수 훈련 시스템의 개발)

  • Christiand, Christiand;Yoon, Jung-Won
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.49-54
    • /
    • 2008
  • In order to do a maintenance task, a maintenance operator should learn the basic skills of the maintenance task such as assembly and disassembly (A/D). However, the key of the learning process is to learn the A/D task intuitively and naturally. Haptic guidance promises to give effectiveness and benefit qualitatively since a person can be trained to do the optimal task based on information that comes from an expert, database, or intelligent algorithms. By applying haptic guidance, a maintenance training process can be made more intuitive and natural in a virtual environment. This paper describes the development of a maintenance training system by using haptic guidance.

  • PDF

Automotive Engineering Educational System Development Using Augmented Reality (증강 현실을 이용한 자동차 공학 교육 시스템 개발)

  • Farkhatdinov, Ildar;Kim, Dae-Won;Ryu, Jee-Hwan
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.1 no.1
    • /
    • pp.51-54
    • /
    • 2009
  • In or automotive engineering education is introduced. Main objective of the system is teaching disassemble/assemble procedure of automatic transmission of a vehicle to students, who study automotive engineering. System includes vehicle transmission, set of tools and mechanical facilities, two video cameras, computer with developed software, HMD glasses and two LCD screens. Developed software gives instructions on assembling and disassembling processes of real vehicle transmission with the help of augmenting virtual reality objects on the video stream. Overlaying of 3D instructions on the technological workspace can be used as an interactive educational material. In disassembling process, mechanical parts which should be disassembled are augmented on video stream from video cameras. Same is done for assembling process. Animation and other visual effects are applied for better indication of the current assembling/disassembling instruction. During learning and training, student can see what parts of vehicle transmission and in which order should be assembled or disassembled. Required tools and technological operations are displayed to a student with the help of augmented reality, as well. As a result, the system guides a student step-by-step through an assembly/disassembly sequence. During educational process a student has an opportunity to return back to any previous instruction if it is necessary. Developed augmented reality system makes educational process more interesting and intuitive. Using of augmented reality system for engineering education in automotive technology makes learning process easier and financially more effective.

  • PDF

Children's Education Application Design Using AR Technology (AR기술을 활용한 어린이 교육 어플리케이션 디자인)

  • Chung, HaeKyung;Ko, JangHyok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.23-28
    • /
    • 2021
  • Augmented reality is a technique for combining virtual images into real life by showing information of virtual 3D objects on top of a real-world environment (Azuma et al., 2001). This study is an augmented reality-based educational content delivery device that receives user input that selects either a preset object or a photographed object for augmented reality-based training; It includes a three-dimensional design generation unit that generates a stereoscopic model of the augmented reality environment from an object, a three-dimensional view of the scene, a disassembly process of the developing road from a three-dimensional model, and a content control unit provided by the user terminal by generating educational content including a three-dimensional model, a scene chart, a scene, a decomposition process, and a coupling process to build a coupling process from the scene to the three-dimensional model in an augmented reality environment. The next study provides a variety of educational content so that children can use AR technology as well as shapes to improve learning effectiveness. We also believe that studies are needed to quantitatively measure the efficacy of which educational content is more effective when utilizing AR technology.