• Title/Summary/Keyword: virtual boundary element

Search Result 56, Processing Time 0.03 seconds

Virtual boundary element-equivalent collocation method for the plane magnetoelectroelastic solids

  • Yao, Wei-An;Li, Xiao-Chuan;Yu, Gui-Rong
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.1-16
    • /
    • 2006
  • This paper presents a virtual boundary element-equivalent collocation method (VBEM) for the plane magnetoelectroelastic solids, which is based on the fundamental solutions of the plane magnetoelectroelastic solids and the basic idea of the virtual boundary element method for elasticity. Besides all the advantages of the conventional boundary element method (BEM) over domain discretization methods, this method avoids the computation of singular integral on the boundary by introducing the virtual boundary. In the end, several numerical examples are performed to demonstrate the performance of this method, and the results show that they agree well with the exact solutions. So the method is one of the efficient numerical methods used to analyze megnatoelectroelastic solids.

Scaled Boundary Finite Element Methods for Non-Homogeneous Half Plane (비동질 반무한 평면에서의 비례경계유한요소법)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.127-136
    • /
    • 2007
  • In this paper, the equations of the scaled boundary finite element method are derived for non-homogeneous half plane and analyzed numerically In the scaled boundary finite element method, partial differential equations are weaken in the circumferential direction by approximation scheme such as the finite element method, and the radial direction of equations remain in analytical form. The scaled boundary equations of non-homogeneous half plane, its elastic modulus varies as power function, are newly derived by the virtual work theory. It is shown that the governing equation of this problem is the Euler-Cauchy equation, therefore, the logarithm mode used in the half plane problem is not valid in this problem. Two numerical examples are analysed for the verification and the feasibility.

The Prediction Modelling on the Stress Intensity Factor of Two Dimensional Elastic Crack Emanating from the Hole Using Neural Network and Boundary element Method (신경회로망과 경계요소법을 이용한 원공에서 파생하는 2차원 탄성균열의 응력세기계수 예측 모델링)

  • Yun, In-Sik;Yi, Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.353-361
    • /
    • 2001
  • Recently the boundary element method has been developed swiftly. The boundary element method is an efficient and accurate means for analysis of two dimensional elastic crack problems. This paper is concerned with the evaluation and the prediction of the stress intensity factor(SIF) for the crack emanating from the circular hole using boundary element method-neural network. The SIF of the crack emanating from the hole was calculated by using boundary element method. Neural network is used to evaluate and to predict SIF from the results of boundary element method. The organized neural network system (structure of four processing element) was learned with the accuracy 99%. The learned neural network system could be evaluated and predicted with the accuracy of 83.3% and 71.4% (in cases of SIF and virtual SIF). Thus the proposed boundary element method-neural network is very useful to estimate the SIF.

Variational approximate for high order bending analysis of laminated composite plates

  • Madenci, Emrah;Ozutok, Atilla
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.97-108
    • /
    • 2020
  • This study presents a 4 node, 11 DOF/node plate element based on higher order shear deformation theory for lamina composite plates. The theory accounts for parabolic distribution of the transverse shear strain through the thickness of the plate. Differential field equations of composite plates are obtained from energy methods using virtual work principle. Differential field equations of composite plates are obtained from energy methods using virtual work principle. These equations were transformed into the operator form and then transformed into functions with geometric and dynamic boundary conditions with the help of the Gâteaux differential method, after determining that they provide the potential condition. Boundary conditions were determined by performing variational operations. By using the mixed finite element method, plate element named HOPLT44 was developed. After coding in FORTRAN computer program, finite element matrices were transformed into system matrices and various analyzes were performed. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.

Virtual Reality Presentation for Nondestructive Evaluation of Rebar Corrosion in Concrete based on Inverse BEM

  • Kyung, Je-Woon;Yokota, Masaru;Leelalerkiet, V.;Ohtsu, Masayasu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.157-162
    • /
    • 2005
  • In order to evaluate the corrosion of reinforcing steel-bars (rebar) in concrete, a nondestructive evaluation by the half-cell potential method is currently applied. In this study, potentials measured on a concrete surface are compensated into those on the concrete-rebar interface by the inverse boundary element method (IBEM). Because these potentials are obtained three-dimensionally (3-D), 3-D visualization is desirable. To this end, a visualization system has been developed by using VRML (Virtual Reality Modeling Language). As an application, results of a reinforced concrete (RC) slab with corroded rebars are visualized and discussed.

Hydroelastic vibration analysis of wetted thin-walled structures by coupled FE-BE-Procedure

  • Rohr, Udo;Moller, Peter
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.101-118
    • /
    • 2001
  • The reliable prediction of elastic vibrations of wetted complex structures, as ships, tanks, offshore structures, propulsion components etc. represent a theoretical and numerical demanding task due to fluid-structure interaction. The paper presented is addressed to the vibration analysis by a combined FE-BE-procedure based on the added mass concept utilizing a direct boundary integral formulation of the potential fluid problem in interior and exterior domains. The discretization is realized by boundary element collocation method using conventional as well as infinite boundary element formulation with analytical integration scheme. Particular attention is devoted to modelling of interior problems with both several separate or communicating fluid domains as well as thin-walled structures wetted on both sides. To deal with this specific kind of interaction problems so-called "virtual" boundary elements in areas of cut outs are placed to satisfy the kinematical conditions in partial connected fluid domains existing in realistic tank systems. Numerical results of various theoretical and practical examples demonstrate the performance of the BE-methodology presented.

Finite Element Modeling and Experimental Verification of the Automotive Electronics (자동차 전장부품의 유한요소 모델링 및 실험적 검증)

  • Oh, Se-Jong;Lee, Hae-Jin;Kang, Won-Ho;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.204-207
    • /
    • 2005
  • A reliable and practical finite element modeling technique to predict the lifetime of automotive electronics is important for engineers in reliability. In reliability evaluation on the automotive electronics, most studies rarely used FE model verification process. The material properties and boundary conditions are very important factors in this process to assure the reliability of the automotive electronics. This study aims to develop a better and more accurate FE model in order to predict fatigue life of the automotive electronics using Virtual Qualification lifetime assessment techniques. After conducting the modal analysis by the experiments to grasp a system characteristic, this paper presents material properties and boundary conditions that is obtained by the comparisons of FEA simulation results using DOE technique and the experiment results.

  • PDF

Prediction of the noise radiated by the structural vibration of a powertrain (파워트레인 구조진동으로 인한 방사소음 예측에 관한 연구)

  • Oh, Ki-Seok;Lee, Sang-Kwon;Kim, Sung-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.891-896
    • /
    • 2007
  • Noise radiated from the powertrain is an important factor of the vehicle interior noise. In this paper, Finite Element(FE) model and Boundary Element(BE) models were created. The FE model was updated by doing a correlation between experimental modal analysis(EMA) values and finite element analysis(FEA) values. Main bearing forces were calculated using a running modal data. The forced vibration analysis was simulated using the software MSC/NASTRAN, and the radiated noise was predicted using the software LMS/VIRTUAL.LAB.

  • PDF

Numerical Calculation of Energy Release Rates by Virtual Crack Closure Technique

  • Choi, Jae-Boong;Kim, Young-Jin;Yagawa, Genki
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1996-2008
    • /
    • 2004
  • A seamless analysis of material behavior incorporating complex geometry and crack- tip modeling is one of greatly interesting topics in engineering and computational fracture mechanics fields. However, there are still large gaps between the industrial applications and fundamental academic studies due to a time consuming detailed modeling. In order to resolve this problem, a numerical method to calculate an energy release rate by virtual crack closure technique was proposed in this paper. Both free mesh method and finite element method have been utilized and, thereafter, robust local and global elements for various geometries and boundary conditions were generated. A validity of the proposed method has been demonstrated through a series of fracture mechanics analyses without tedious crack-tip meshing.

Boundary Element Analysis for Individual Acoustic Responses in Ear Canal of Korean Adults (한국인 성인남자의 개별 이도내 음향응답에 대한 경계요소 해석)

  • Lee, Dooho;Ahn, Tae-Soo;Son, Young-Seok;Shin, Jeeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.226-233
    • /
    • 2013
  • Individual differences in head-related transfer functions(HRTFs) were calculated using boundary element(BE) models for three Korean adults. The BE models for the individuals were developed from the computerized tomography(CT) images of the individuals. The BE models were composed of the head, pinna, and ear canal. The frequency-dependent impedance boundary conditions were imposed on the skin, hair, and tympanic membrane. The HRTFs calculated from the individual BE models showed large difference above 2 kHz in magnitude and in the locations of peaks and valleys of the frequency spectrums, which should be considered in virtual auditory sound field. The identified individual differences in the HRTFs demonstrate that the developed BE models can be utilized successfully in order to obtain the HRTFs information of individuals.