• Title/Summary/Keyword: virtual address

Search Result 213, Processing Time 0.026 seconds

A Workflow Execution System for Analyzing Large-scale Astronomy Data on Virtualized Computing Environments

  • Yu, Jung-Lok;Jin, Du-Seok;Yeo, Il-Yeon;Yoon, Hee-Jun
    • International Journal of Contents
    • /
    • v.16 no.4
    • /
    • pp.16-25
    • /
    • 2020
  • The size of observation data in astronomy has been increasing exponentially with the advents of wide-field optical telescopes. This means the needs of changes to the way used for large-scale astronomy data analysis. The complexity of analysis tools and the lack of extensibility of computing environments, however, lead to the difficulty and inefficiency of dealing with the huge observation data. To address this problem, this paper proposes a workflow execution system for analyzing large-scale astronomy data efficiently. The proposed system is composed of two parts: 1) a workflow execution manager and its RESTful endpoints that can automate and control data analysis tasks based on workflow templates and 2) an elastic resource manager as an underlying mechanism that can dynamically add/remove virtualized computing resources (i.e., virtual machines) according to the analysis requests. To realize our workflow execution system, we implement it on a testbed using OpenStack IaaS (Infrastructure as a Service) toolkit and HTCondor workload manager. We also exhaustively perform a broad range of experiments with different resource allocation patterns, system loads, etc. to show the effectiveness of the proposed system. The results show that the resource allocation mechanism works properly according to the number of queued and running tasks, resulting in improving resource utilization, and the workflow execution manager can handle more than 1,000 concurrent requests within a second with reasonable average response times. We finally describe a case study of data reduction system as an example application of our workflow execution system.

Digital Transformation of Education Brought by COVID-19 Pandemic

  • Kim, Hye-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.183-193
    • /
    • 2021
  • In this paper, the author found and analyzed the problems caused by the change of traditional teaching methods to online in classrooms and laboratories. Looking at the analysis of major problems, first, there were various technical problems, including not all environments and facilities being connected to the Internet. Second, the effectiveness of virtual classes, which were suddenly switched online, could also be questioned. Finally, in the face of a new environment, the stress of teachers to adapt rapidly to the new teaching methodology was a problem. The author proposed digital transformation as a way to address these problems. The author analyzed educational changes, learning modalities and various technical tools, and various tasks to enable digital transformation. First, the author investigated, analyzed, and presented the factors necessary to efficiently operate the classroom environment that will change to online. Next, the author analyzed the factors and problems needed to make the students' classes reliable and efficient, and proposed solutions. Finally, the author pointed out the problem that during online lectures, the responsibility of learning is excessively transferred from teachers to students, and proposed a solution to this problem. Subsequently, the author proposed future studies.

BPFast: An eBPF/XDP-Based High-Performance Packet Payload Inspection System for Cloud Environments (BPFast: 클라우드 환경을 위한 eBPF/XDP 기반 고속 네트워크 패킷 페이로드 검사 시스템)

  • You, Myoung-sung;Kim, Jin-woo;Shin, Seung-won;Park, Tae-june
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.213-225
    • /
    • 2022
  • Containerization, a lightweight virtualization technology, enables agile deployments of enterprise-scale microservices in modern cloud environments. However, containerization also opens a new window for adversaries who aim to disrupt the cloud environments. Since microservices are composed of multiple containers connected through a virtual network, a single compromised container can carry out network-level attacks to hijack its neighboring containers. While existing solutions protect containers against such attacks by using network access controls, they still have severe limitations in terms of performance. More specifically, they significantly degrade network performance when processing packet payloads for L7 access controls (e.g., HTTP). To address this problem, we present BPFast, an eBPF/XDP-based payload inspection system for containers. BPFast inspects headers and payloads of packets at a kernel-level without any user-level components. We evaluate a prototype of BPFast on a Kubernetes environment. Our results show that BPFast outperforms state-of-the-art solutions by up to 7x in network latency and throughput.

Adhesive Area Detection System of Single-Lap Joint Using Vibration-Response-Based Nonlinear Transformation Approach for Deep Learning (딥러닝을 이용하여 진동 응답 기반 비선형 변환 접근법을 적용한 단일 랩 조인트의 접착 면적 탐지 시스템)

  • Min-Je Kim;Dong-Yoon Kim;Gil Ho Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.57-65
    • /
    • 2023
  • A vibration response-based detection system was used to investigate the adhesive areas of single-lap joints using a nonlinear transformation approach for deep learning. In industry or engineering fields, it is difficult to know the condition of an invisible part within a structure that cannot easily be disassembled and the conditions of adhesive areas of adhesively bonded structures. To address these issues, a detection method was devised that uses nonlinear transformation to determine the adhesive areas of various single-lap-jointed specimens from the vibration response of the reference specimen. In this study, a frequency response function with nonlinear transformation was employed to identify the vibration characteristics, and a virtual spectrogram was used for classification in convolutional neural network based deep learning. Moreover, a vibration experiment, an analytical solution, and a finite-element analysis were performed to verify the developed method with aluminum, carbon fiber composite, and ultra-high-molecular-weight polyethylene specimens.

Mechanical behaviour analysis of FGM plates on elastic foundation using a new exponential-trigonometric HSDT

  • Fatima Z. Zaoui;Djamel Ouinas;Abdelouahed Tounsi;Belkacem Achour;Jaime A. Vina Olay;Tayyab A. Butt
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.551-568
    • /
    • 2023
  • In this research, a new two-dimensional (2D) and quasi three-dimensional (quasi-3D) higher order shear deformation theory is devised to address the bending problem of functionally graded plates resting on an elastic foundation. The displacement field of the suggested theories takes into account a parabolic transverse shear deformation shape function and satisfies shear stress free boundary conditions on the plate surfaces. It is expressed as a combination of trigonometric and exponential shear shape functions. The Pasternak mathematical model is considered for the elastic foundation. The material properties vary constantly across the FG plate thickness using different distributions as power-law, exponential and Mori-Tanaka model. By using the virtual works principle and Navier's technique, the governing equations of FG plates exposed to sinusoidal and evenly distributed loads are developed. The effects of material composition, geometrical parameters, stretching effect and foundation parameters on deflection, axial displacements and stresses are discussed in detail in this work. The obtained results are compared with those reported in earlier works to show the precision and simplicity of the current formulations. A very good agreement is found between the predicted results and the available solutions of other higher order theories. Future mechanical analyses of three-dimensionally FG plate structures can use the study's findings as benchmarks.

Smart Healthcare: Enabling AI, Blockchain, VR/AR and Digital Solutions for Future Hospitals (스마트 헬스케어: 미래 병원을 위한 AI, 블록체인, VR/AR 및 디지털 솔루션 구현)

  • Begum, Khadija;Rashid, Md Mamunur;Armand, Tagne Poupi Theodore;Kim, Hee-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.406-409
    • /
    • 2022
  • In recent years, the developments in technologies, such as AI systems, Blockchain, VR/AR, 3D printing, robotics, and nanotechnology, are reshaping the future of healthcare right before our eyes. And also, healthcare has seen a paradigm shift towards prevention-oriented medicine, with a focus on consumers requirements. The spread of infectious diseases such as Covid-19 have altered the definition of healthcare and treatment facilities, necessitating immediate action to redesign hospitals' physical environments, adapt communication models to address social distancing requirements, implement virtual health solutions, and establish new clinical protocols. Hospitals, which have traditionally served as the hub of healthcare systems, are pursuing or being forced to reestablish themselves against this landscape. Rather than only treating ailments, future healthcare is predicted to focus on wellness and prevention. In personalized care, long-term prevention strategies, remote monitoring, early diagnosis, and detection are critical. Given the growing interest in smart healthcare defined by these modern technologies, this study looked into the definitions and service kinds of smart healthcare. The background and technical aspects of smart hospitals were also explored through a literature review.

  • PDF

The Architecture of an Intelligent Digital Twin for a Cyber-Physical Route-Finding System in Smart Cities

  • Habibnezhad, Mahmoud;Shayesteh, Shayan;Liu, Yizhi;Fardhosseini, Mohammad Sadra;Jebelli, Houtan
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.510-519
    • /
    • 2020
  • Within an intelligent automated cyber-physical system, the realization of the autonomous mechanism for data collection, data integration, and data analysis plays a critical role in the design, development, operation, and maintenance of such a system. This construct is particularly vital for fault-tolerant route-finding systems that rely on the imprecise GPS location of the vehicles to properly operate, timely plan, and continuously produce informative feedback to the user. More essentially, the integration of digital twins with cyber-physical route-finding systems has been overlooked in intelligent transportation services with the capacity to construct the network routes solely from the locations of the operating vehicles. To address this limitation, the present study proposes a conceptual architecture that employs digital twin to autonomously maintain, update, and manage intelligent transportation systems. This virtual management simulation can improve the accuracy of time-of-arrival prediction based on auto-generated routes on which the vehicle's real-time location is mapped. To that end, first, an intelligent transportation system was developed based on two primary mechanisms: 1) an automated route finding process in which predictive data-driven models (i.e., regularized least-squares regression) can elicit the geometry and direction of the routes of the transportation network from the cloud of geotagged data points of the operating vehicles and 2) an intelligent mapping process capable of accurately locating the vehicles on the map whereby their arrival times to any point on the route can be estimated. Afterward, the digital representations of the physical entities (i.e., vehicles and routes) were simulated based on the auto-generated routes and the vehicles' locations in near-real-time. Finally, the feasibility and usability of the presented conceptual framework were evaluated through the comparison between the primary characteristics of the physical entities with their digital representations. The proposed architecture can be used by the vehicle-tracking applications dependent on geotagged data for digital mapping and location tracking of vehicles under a systematic comparison and simulation cyber-physical system.

  • PDF

Design of an Enhanced Group Keypad to Prevent Shoulder-Surfing Attacks and Enable User Convenience (어깨 너머 공격을 차단하고 사용 편의성이 가능한 개선된 그룹 키패드 설계)

  • Hyung-Jin Mun
    • Journal of Practical Engineering Education
    • /
    • v.15 no.3
    • /
    • pp.641-647
    • /
    • 2023
  • In the fintech environment, ensuring secure financial transactions with smartphones requires authenticating the device owner. Smartphone authentication techniques encompass a variety of approaches, such as passwords, biometrics, SMS authentication, and more. Among these, password-based authentication is commonly used and highly convenient for user authentication. Although it is a simple authentication mechanism, it is susceptible to eavesdropping and keylogging attacks, alongside other threats. Security keypads have been proposed to address vulnerabilities in password input on smartphones. One such innovation is a group keypad, resistant to attacks that guess characters based on touch location. However, improvements are needed for user convenience. In this study, we aim to propose a method that enhances convenience while being resistant to eavesdropping and recording attacks on the existing group keypad. The proposed method uses new signs to allow users to verify instead of the last character confirmation easily and employs dragging-to-touch for blocking recording attacks. We suggest diverse positioning methods tailored for domestic users, improving efficiency and security in password input compared to existing methods.

A Boundary-layer Stress Analysis of Laminated Composite Beams via a Computational Asymptotic Method and Papkovich-Fadle Eigenvector (전산점근해석기법과 고유벡터를 이용한 복합재료 보의 경계층 응력 해석)

  • Sin-Ho Kim;Jun-Sik Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.41-47
    • /
    • 2024
  • This paper utilizes computational asymptotic analysis to compute the boundary layer solution for composite beams and validates the findings through a comparison with ANSYS results. The boundary layer solution, presented as a sum of the interior solution and pure boundary layer effects, necessitates a mathematically rigorous formalization for both interior and boundary layer aspects. Computational asymptotic analysis emerges as a robust technique for addressing such problems. However, the challenge lies in connecting the boundary layer and interior solutions. In this study, we systematically separate the principles of virtual work and the principles of Saint-Venant to tackle internal and boundary layer issues. The boundary layer solution is articulated by calculating the Papkovich-Fadle eigenfunctions, representing them as linear combinations of real and imaginary vectors. To address warping functions in the interior solutions, we employed a least squares method. The computed solutions exhibit excellent agreement with 2D finite element analysis results, both quantitatively and qualitatively. This validates the effectiveness and accuracy of the proposed approach in capturing the behavior of composite beams.

Conditional Generative Adversarial Network based Collaborative Filtering Recommendation System (Conditional Generative Adversarial Network(CGAN) 기반 협업 필터링 추천 시스템)

  • Kang, Soyi;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.157-173
    • /
    • 2021
  • With the development of information technology, the amount of available information increases daily. However, having access to so much information makes it difficult for users to easily find the information they seek. Users want a visualized system that reduces information retrieval and learning time, saving them from personally reading and judging all available information. As a result, recommendation systems are an increasingly important technologies that are essential to the business. Collaborative filtering is used in various fields with excellent performance because recommendations are made based on similar user interests and preferences. However, limitations do exist. Sparsity occurs when user-item preference information is insufficient, and is the main limitation of collaborative filtering. The evaluation value of the user item matrix may be distorted by the data depending on the popularity of the product, or there may be new users who have not yet evaluated the value. The lack of historical data to identify consumer preferences is referred to as data sparsity, and various methods have been studied to address these problems. However, most attempts to solve the sparsity problem are not optimal because they can only be applied when additional data such as users' personal information, social networks, or characteristics of items are included. Another problem is that real-world score data are mostly biased to high scores, resulting in severe imbalances. One cause of this imbalance distribution is the purchasing bias, in which only users with high product ratings purchase products, so those with low ratings are less likely to purchase products and thus do not leave negative product reviews. Due to these characteristics, unlike most users' actual preferences, reviews by users who purchase products are more likely to be positive. Therefore, the actual rating data is over-learned in many classes with high incidence due to its biased characteristics, distorting the market. Applying collaborative filtering to these imbalanced data leads to poor recommendation performance due to excessive learning of biased classes. Traditional oversampling techniques to address this problem are likely to cause overfitting because they repeat the same data, which acts as noise in learning, reducing recommendation performance. In addition, pre-processing methods for most existing data imbalance problems are designed and used for binary classes. Binary class imbalance techniques are difficult to apply to multi-class problems because they cannot model multi-class problems, such as objects at cross-class boundaries or objects overlapping multiple classes. To solve this problem, research has been conducted to convert and apply multi-class problems to binary class problems. However, simplification of multi-class problems can cause potential classification errors when combined with the results of classifiers learned from other sub-problems, resulting in loss of important information about relationships beyond the selected items. Therefore, it is necessary to develop more effective methods to address multi-class imbalance problems. We propose a collaborative filtering model using CGAN to generate realistic virtual data to populate the empty user-item matrix. Conditional vector y identify distributions for minority classes and generate data reflecting their characteristics. Collaborative filtering then maximizes the performance of the recommendation system via hyperparameter tuning. This process should improve the accuracy of the model by addressing the sparsity problem of collaborative filtering implementations while mitigating data imbalances arising from real data. Our model has superior recommendation performance over existing oversampling techniques and existing real-world data with data sparsity. SMOTE, Borderline SMOTE, SVM-SMOTE, ADASYN, and GAN were used as comparative models and we demonstrate the highest prediction accuracy on the RMSE and MAE evaluation scales. Through this study, oversampling based on deep learning will be able to further refine the performance of recommendation systems using actual data and be used to build business recommendation systems.