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Abstract: The size of observation data in astronomy has been increasing exponentially with the advents of 
wide-field optical telescopes. This means the needs of changes to the way used for large-scale astronomy data 
analysis. The complexity of analysis tools and the lack of extensibility of computing environments, however, 
lead to the difficulty and inefficiency of dealing with the huge observation data. To address this problem, this 
paper proposes a workflow execution system for analyzing large-scale astronomy data efficiently. The 
proposed system is composed of two parts: 1) a workflow execution manager and its RESTful endpoints that 
can automate and control data analysis tasks based on workflow templates and 2) an elastic resource manager 
as an underlying mechanism that can dynamically add/remove virtualized computing resources (i.e., virtual 
machines) according to the analysis requests. To realize our workflow execution system, we implement it on 
a testbed using OpenStack IaaS (Infrastructure as a Service) toolkit and HTCondor workload manager. We 
also exhaustively perform a broad range of experiments with different resource allocation patterns, system 
loads, etc. to show the effectiveness of the proposed system. The results show that the resource allocation 
mechanism works properly according to the number of queued and running tasks, resulting in improving 
resource utilization, and the workflow execution manager can handle more than 1,000 concurrent requests 
within a second with reasonable average response times. We finally describe a case study of data reduction 
system as an example application of our workflow execution system. 
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1. Introduction 

Astronomy is facing a data tsunami – the size of observation data has been increasing exponentially with 
the advents of wide-field optical telescopes [1]. For example, KMTNet (Korea Microlensing Telescope 
Network) project [2] aiming to provide a system for analyzing Near-Earth Objects (NEOs) in the southern 
hemisphere sky, has installed three 1.6 meters wide-field optical telescopes in South-Africa, Australia, and 
Chile. The data from these telescopes, already amounting to hundreds of terabytes (1 terabyte = 1012 bytes), 
will be more critical in size in the near future. This means the needs of changes to the way used for scientific 
data analysis i.e., the gathered huge observation data need to be handled in a timely manner to fully utilize the 
telescopes resources in detecting supernovae, asteroids, external galaxies, etc. However, traditional image 
processing tools like MODP (Moving Object Detection Program) and ASAP (Asteroid Spin Analysis Packages) 
are composed of complex internal pipelines to be processed (i.e., the complexity of analysis tools) [3]. 
Furthermore, those tools also have no glues to bridge underlying computing resources (i.e., the lack of 
extensibility with regard to computing environments), which lead to the difficulty and inefficiency of dealing 
with the huge observation data. 
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To address this problem, this paper proposes a workflow execution system for analyzing large-scale 
astronomy data efficiently. The proposed system is composed of two parts: 1) a workflow execution manager 
(WEM) and its RESTful endpoints [4] that can automate and control data analysis tasks based on workflow 
templates and 2) an elastic resource manager (ERM) as an underlying resource provisioning mechanism of 
WEM that can dynamically add/remove virtualized computing resources (i.e., virtual machines) according to 
the analysis requests. Specifically, because WEM’s workflow templates which represent the sequences of tasks 
with their dependencies are based on HTCondor DAGMan (Directed Acyclic Graph MANager) [5, 6] engine, 
it makes WEM domain-agnostic and highly extensible. With ERM, our system can also elastically scale-out or 
scale-in the resources according to the workload status of system, leading to the improvement of both resource 
utilization and job throughput. To realize our workflow execution system, we implement it on a testbed using 
OpenStack [7] IaaS (Infrastructure as a Service) toolkit and HTCondor workload manager. We also 
exhaustively perform a broad range of experiments with different resource allocation patterns, system loads, 
etc. to show the effectiveness of the proposed system. 

The rest of the paper is organized as follows. Section 2 briefly overviews background and related works. 
Section 3 describes the details of the proposed workflow execution system. Section 4 provides the experimental 
results on the dynamic resource allocation and the RESTful endpoints, as well as KMTNet data reduction 
system as an example application of our workflow execution system. Finally, we conclude in Section 5. 

2. Background and Related Works  

2.1 HTCondor and OpenStack 

HTCondor is a batch workload manager for bulk and/or distributed jobs, which provides primitive 
functions like job queueing/scheduling, resource monitoring, etc. To do this, HTCondor executes different kinds 
of service daemons – collector, negotiator, scheduler, starter– (see Table 1) and all the information (e.g., 
slot(core), job, queue, etc.) for interacting with these service daemons is expressed by ClassAd [8] and can be 
manipulated through Python API bindings. HTCondor also provides a DAGMan [9] that can execute a series 
of jobs in sequence according to their dependencies.  

 
Table 1. HTCondor service daemons 

Service Daemon Description 
collector Manage all the information of other service daemons 

negotiator Decide whether to assign jobs to slots using data from collector 
daemon 

scheduler Manage queues and assign a job to the slots according to the 
decision of negotiator daemon 

starter Manage the slots (cores) for executing a job 
 
As a well-established IaaS (Infrastructure as a Service) Cloud toolkit, OpenStack is composed of a lot of 

components (Compute, Storage, Network, etc.) which can be used to configure large-scale pooled computing 
resources, and interoperates with outside 3rd party applications by exporting OpenAPIs for each component (as 
shown in Table 2). Especially, OpenStack provides the features to customize virtualized computing 
environments using user-defined scripts (or using virtual machine images including those scripts), for instance, 
setting hostname, setting the mount point of shared network storage, etc. when virtual machines (VMs) are 
created. 

 
Table 2. OpenStack components 

Component Description 
Keystone Provide user authentication/authorization service  
Neutron Provide network functions for virtual machines 
Glance Manage the OS images for virtual machines 
Nova Manage virtual machines lifecycles (create, delete, reboot, etc.) 
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2.2 Related Works 

There are a few efforts of providing computing environments to analyze huge astronomy data in the 
literature. G. B. Berriman et. al. [10] described a workflow management system on top of Pegasus [11] to create 
new datasets of Galactic Plane Atlas, integrating commercial Amazon EC2 cloud computing resources. To some 
extents, this idea is similar to our approach in terms of utilizing virtual clusters (a set of virtual machines), 
however, it does not consider elastic provisioning of backend computing resources according to the requested 
data processing ratio yet, just focusing on how to build a customized virtual cluster over Amazon EC2.  

M. Johnson, et. al. [12] proposed data management and processing frameworks using geographically 
distributed HTCondor infrastructure for the Dark Energy Survey (DES) project – to probe the origin of the 
accelerating universe and help uncover the nature of dark energy. It provides the idea of glide-in data processing 
jobs on Virtual Organizations (VOs) HTCondor pool via flocking mechanism. However, like [10], it still has 
the lack of automating the provision of resources with data processing ratio, and also simply depends on 
HTCondor’s DAGMan to build data reduction pipelines without a workflow execution system of providing 
higher level of abstraction like workflow templates and APIs. 

3. Proposed Workflow Execution System 

3.1 Workflow Execution Manager 

Workflow execution manager (WEM) transforms a workflow into a series of HTCondor jobs and performs 
the control of execution (submit, monitor, cancel, suspend/resume, etc.) of each job. It also provides HTTP(S)-
based RESTful endpoints for the incorporation of external applications. Figure 1 shows the layered block 
diagram of the proposed WEM. It consists of four subsystems: Model, DAO (Data Access Object), Service and 
Controller as described follows: 

 
• Model: Model represents database schemas which define and describe the information of workflow 

instances, e.g., MODP, ASAP, Resources Pool 
• DAO: DAO provides CRUD (Create-Read-Update-Delete)-style access methods for the database objects 

(using SQLAlchemy [13]). 
• Service: Service plays a key role in executing workflow instances and managing their lifecycles using 

HTCondor DAGMan based workflow templates. 
• Controller: Controller provides HTTP(S)-based RESTful endpoints for the execution of workflow 

instances and for the retrieval of available computing resources allocated to the specific workflows. 
 

 
Figure 1. Layered block diagram of workflow execution manager 

Basically, MODP and ASAP are the image processing tools used in astronomy field which consist of 
complex internal analysis pipelines, which generally expressed as directed acyclic graphs. WEM exploits split-
merge model for MODP because MODP tool divides each image file (18K x 18K size) into 256 independent 
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tiles for 3 consecutive image files (TRIPLTET) and merges the results to find moving objects. After the 
execution of MODP, ASAP uses MODP’s results to perform asteroid spin/features analysis with its light curve. 
Because ASAP is composed of three main steps to do this analysis, WEM implements ASAP workflow 
templates with linear model. Table 3 shows WEM’s RESTful endpoints to execute workflows defined by 
workflow templates and check the available computing resources. Using these endpoints, applications (or users) 
can submit workflow instances with the resulting executionID, and manage the workflow lifecycles 
(stop/suspend/resume, etc.) 

 
Table 3. RESTful endpoints of workflow execution manager 

Function Endpoint URL 
Submit MODP 
workflow 

http://-/WEM/api/v1/workflow?category=MODP&PID={...}&SITE={...}&DATE= 
{...}&TF= {...}&TRIPLET= {...}&targetDir= {"/x/y/z"}&splitNum= {256} 

Submit ASAP 
workflow 

http://-/WEM/api/v1/workflow?category=ASAP&PID={...}&SITE={...}&DATE= 
{...}&OBJECT={...}&TF={...}&targetDir={"/x/y/z"}&CHIP={...}&objectNum= {...} 

Monitor 
workflow status http://-/WEM/api/v1/workflow/ {executionID}/status?category={MODP|ASAP} 

Suspend 
workflow 
execution 

http://-/WEM/api/v1/workflow/ {executionID}/suspend?category={MODP|ASAP} 

Resource 
workflow 
execution 

http://-/WEM/api/v1/workflow/ {executionID}/resume?category={MODP|ASAP} 

Cancel workflow 
execution http://-/WEM/api/v1/workflow/ {executionID}/stop?category={MODP|ASAP} 

List available 
resources http://-/WEM/api/v1/pool/list?category={MODP|ASAP} 

3.2 Elastic Resource Manager 

3.2.1 Virtual Cluster 

ERM initially configures a virtual cluster (VC) environment, which consists of VMs to provide 
compute/storage elements that can be utilized to perform large-scale pipelined data analysis tasks in WEM. 
Figure 2 shows the configuration of a VC that can be created by ERM in order to process distributed data 
analysis tasks. A VC consists of a master VM and number of worker VMs, where each VM has 16 CPU cores, 
16 GBytes main memory, 400 GBytes local storage and interconnections with other VMs by 10Gbps private 
Ethernet. A master VM commonly has a role of managing worker VMs with executing HTCondor related 
daemons (e.g., collector, negotiator, scheduler, etc.) as well as WEM and ERM. Unlike master VM, worker 
VMs as elements for HTCondor computing resources pool, can execute MODP/ASAP workflow instances. All 
the worker VMs have the same setup configurations, for example, OpenLDAP [14] clients for 
authentication/authorization, mount clients for shared storages (e.g., scratch volumes with Lustre [15] parallel 
file systems, home volumes with NFS, etc.). 

Whenever we need a VC to perform data analysis tasks, ERM can initially do provisioning it in dynamic 
and independent manner. Figure 3 shows the sequence diagram of composing a VC environment (i.e., adding 
N worker VMs to an existing VC). Assume that we have an existing VC that has one master VM and one worker 
VM. If it is required to create N worker VMs and add those VMs to the existing VC, ERM deals with 1 ~ (N-
1)th worker VMs and Nth worker VM separately to share all the same cluster configurations. First, ERM calls 
an OpenStack IaaS toolkit function to create 1 ~ (N-1)th worker VMs. Then, all the worker VMs are booted 
using a shared VM image and then a user-script file is executed on each worker VM. After finishing the creation 
of 1 ~ (N-1)th worker VMs, ERM can obtain hostnames and IPs mapping information of the worker VMs. 

Second, ERM creates Nth worker VM with those mapping information. When Nth worker VM completes 
its booting procedure, Nth worker VM merges previous mapping for the existing VC and newly created 1 ~ (N-
1)th worker VMs mapping information, and finally Nth VM propagates all the mappings to all the cluster 
members. Through this way, ERM can add N worker VMs to the existing VC. 
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Figure 2. A configuration of virtual cluster that is created by ERM to process distributed analysis tasks 

 
Figure 3. Sequence diagram for building a virtual cluster environment 

 
Figure 4. Flow chart of allocating or deallocating worker virtual machines 
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3.2.2 Dynamic Resource Provisioning 

Managing computing resources elastically becomes more crucial in order to improve both resource 
utilization and job throughput in data analytics systems. To do this, ERM can dynamically allocate (or deallocate) 
worker VMs to (or from) the existing HTCondor resources pool based on the information about the number of 
queued (thus waiting) jobs and the number of running cores (i.e., slots in terms of HTCondor), which can be 
done by using HTCondor APIs and OpenStack APIs.  

Figure 4 shows the flow chart of allocating or deallocating worker VMs used in our ERM. Detailed 
description on the dynamic resource provisioning is as follows: 
1. ERM periodically renews the information about the number of queued (waiting) jobs and the number of 

running slots which can be obtained from HTCondor job manager. 
2. Using the information of (1), ERM tries to add a worker VM to the existing HTCondor computing 

resources pool if and only if the number of waiting jobs is greater than the number of running slots (by the 
procedure explained in subsection 3.2.1). 

3. If waiting jobs do not exist, ERM finds worker VMs that do not have running slots. Then, it tries to 
deallocate such kind of worker VMs and updates all the cluster mapping information. 

4. If there are no jobs in the system, ERM maintains only two VMs (a master VM and a worker VM). 

4. Experimental Results 

To realize our workflow execution system described in Section 3, we implement it on a testbed using 
OpenStack IaaS toolkit and HTCondor job manager. Our testbed consists of a controller node, a network node, 
an image node and 16 compute nodes, totally 19 nodes, which is configured as IaaS computing environment 
using OpenStack keystone (for ID management), neutron (for Layer3 network management), glance (for VM 
image management), and nova (for compute management) components, respectively. All the physical nodes 
have connected with 50 Terabytes and 4.5 Terabytes shared storages for scratch and user home directory. They 
are inter-connected with both 10Gbps private network and 1Gbps management Ethernet network, and specially 
the controller and the network nodes are also connected to public 1Gbps Ethernet in order to provide self-
serviced multi-tenancy networks. Each node has one Intel Xeon 2.6GHz CPU (16 cores), 96GBytes main 
memory. On this testbed, we exhaustively perform a broad range of experiments with different resource 
allocation patterns, system loads, etc. to show the effectiveness of the proposed system. 

4.1 Dynamic Resource Allocation 

4.1.1 Analysis of Resource Allocation using Synthetic Workloads 

First, we analyze the behavior of resources scaling-out/in while a synthetic workload has been injected to 
our workflow execution system. For this experiment, we used a synthetic workload profile that represents 14 
groups of workloads (with 50 seconds inter-arrival time) where each workload has simultaneous 16 jobs with 
300 seconds execution time. Figure 5 shows the resource allocation graph for this workload. Before executing 
the workload, we initially set up HTCondor resource pool to have one worker VM (i.e., 16 slots) with the 
limitation of maximum of 96 slots. From the Figure 5, we confirm that our system can dynamically adjust the 
amount of worker VMs according to the workload status. Especially, if there are newly arrived jobs which are 
not able to be executed due to the lack of available resources (i.e., idle/waiting jobs, green-colored line), the 
ERM tries to add worker VMs to the resources pool by comparing the number of idle jobs with the number of 
running slots (see Figure 5. A period), resulting in the increment of total and running slots (black and blue-
colored lines, respectively). After that, our system eventually reaches the point that the number of idle jobs 
becomes the ceiling of the number of total slots. In this case, our system decides not to allocate more worker 
VMs with the expectation that the idle jobs can be executed using existing slots in the near future (see Figure 
5. B period). Next, if there are no idle jobs, our system can release worker VMs from the resources pool with 
finding worker VMs that do not have running slots, as shown in Figure 5. C period. With this way, our system 
can elastically scale-out or scale-in the resources according to the workload status of system, with the 
expectation of improving both resource utilization and job throughput. 
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Figure 5. Dynamic resource allocation according to the number of idle jobs and running slots 

4.1.2 Analysis of Resource Allocation using MODP/ASAP Workloads 

In this subsection, next, we analyze the resource allocation when we apply more realistic MODP/ASAP 
workloads to the system. Figure 6 depicts the resource allocation graph for a MODP workflow instance when 
a user submits a MODP workflow execution to WEM using WEM OpenAPIs. Note that, as described in Section 
2.2, a MODP workflow instance is divided into the 256 independent jobs by its workflow template. For this 
experiment, we also set up an initial VC to have one worker VM (i.e., 16 slots). Like the case of synthetic 
workloads, from the Figure 6, we confirm again that our ERM can elastically provide additional computing 
cores to (or release the computing cores from) HTCondor resource pool according to the resource requirements 
of the workload. When increased idle/waiting jobs compared to the running slots, the ERM tries to increase 
gradually more worker VMs to the resource pool (see Figure 6. A period). Also, it can release worker VMs 
from the resource pool if there are no idle jobs (see Figure 6. C period). Unlike MODP workflow, an ASAP 
workflow requires just one slot to do asteroid spin/features analysis (because of its linearity defined by its 
workflow template), thus we performed the same experiment with multiple ASAP workflow instances. From 
the results, we obtained the similar resource allocation behavior as that of Figure 6 (we omit the graph due to 
the space limitation). 

 
Figure 6. Dynamic resource allocation for the MODP workflow 

4.2 Performance Test of RESTful Endpoints 

Figure 7 shows the results for the measurement of throughput of our WEM’s RESTful endpoints using 
httperf [16] benchmark tool. For this experiment, our WEM is deployed on the master VM that has 16 CPU 
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cores, 16 GBytes main memory and 1Gbps Ethernet NIC. Specifically, Figure 7 depicts the average response 
times in milliseconds when we increase the number of concurrent requests. From the results, we note that with 
increasing the number of concurrent requests, the average response times for the requests are also increased, 
but they are converged to about 4500 milliseconds even with 1,000 requests per second. This means more than 
1,000 concurrent requests within a second can be handled with reasonable average response times by our WEM. 
We also expect that the throughput of WEM’s RESTful endpoints will be improved if we use more powerful 
VM (e.g., VMs equipped with more vCPU (virtual CPU) cores, main memory and high-speed network interface 
card enough to perform lots of HTTP requests in multi-threaded way) and optimized settings. 

 
Figure 7. Average response time with varying the number of endpoints requests per second 

4.3 Case Study : KMTNet Data Reduction 

KMTNet [2, 3] project aims to provide a system for monitoring, searching and analyzing Near-Earth 
Objects (NEOs) in the southern hemisphere sky using three 1.6 meters wide-field optical telescopes which are 
installed and operated in South-Africa, Australia, and Chile. All the raw CCD (Charge-Coupled Device) images 
from the three sites are transferred to the KMTNet headquarter in South Korea via network communication. 
About 200 GBytes raw data is collected from each site per night (more than hundreds of terabytes per year) and 
should be processed in near real-time before researchers can access the processed image data to detect 
supernovae, asteroids, external galaxies, etc. and analyze their features. 

For processing those large-scale observation data in near real-time, we deployed our workflow execution 
system as an underlying computing environment of KMTNet data reduction. Figure 8(a) and 8(b) show 
KMTNet controller GUI and its data reduction screenshots, respectively. According to the scheduling decision 
for three telescopes (after monitoring and controlling the telescopes status (see Figure 8(a))), tremendous raw 
data is collected and transferred into the permanent repository in the headquarter as we mentioned before. Then, 
the KMTNet data reduction system (see Figure 8(b)) can upload the raw data to our buffer storage temporarily 
and can call WEM’s RESTful endpoints to submit pre-defined workflows (for examples, Basic Inspection, 
MODP/ASAP workflows, etc.) and monitor their status. On WEM, each kind of workflow instance is 
transformed into a couple of distributed tasks (defined by workflow templates), which are executed on the 
virtualized computing resources controlled by our ERM in an elastic manner. 
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(a)                                          (b) 

Figure 8. KMTNet controller GUIs for monitoring, searching and analyzing Near-Earth Objects (NEOs). (a) 
Telescope controller and (b) Data reduction 

5. Conclusions 

In astronomy area, the size of observation data has been increasing exponentially with the advents of wide-
field optical telescopes, which implies the changes to the way used for large-scale data analysis. However, the 
complexity of analysis tools and the lack of extensibility of computing environments can cause the difficulty 
and inefficiency of dealing with the huge data. To resolve this problem, this paper described a workflow 
execution system to efficiently analyze large-scale astronomy data, which is based on high extensible workflow 
templates and elastic resource provisioning mechanism. In order to realize the proposed workflow execution 
system, we also implemented it on OpenStack IaaS testbed. From the various experimental results, we clearly 
confirmed the effectiveness of the proposed system. We also described a case study of KMTNet reduction 
system as the best practical application example. For the further works, we will compare our experimental 
results with those of prior data analysis systems focusing on the performance, more specifically in terms of data 
processing rate and API’s response time, and also discuss our pros and cons. We also have a plan to design 
more sophisticated and/or workflow-aware resource provisioning algorithms that can be applied to other data 
intensive application areas (e.g., high-energy physics, genomics, etc.) to fully utilize underlying 
computing/storage resources. 
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