• Title/Summary/Keyword: vinyl monomer

Search Result 104, Processing Time 0.033 seconds

Effect of Monomers in Vinyl Urethane Macromonomers on Dispersion Polymerization of Polystyrene

  • Lee, Kangseok;Shim, Sang Eun
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.154-160
    • /
    • 2016
  • The four different vinyl monomers in the reaction of isocyanate-terminated polyurethane prepolymer were used for the preparation of macromonomers and successfully employed in the dispersion polymerization of styrene. The chemical structures of vinyl monomer in macromonomers influenced on the polystyrene particle characteristics, such as the conversion, weight average molecular weights ($M_w$), polydispersity index (PDI), weight average diameter ($D_w$), and uniformity. The conversion of polystyrene increased with amounts of methyl group in vinyl monomer. Also the uniformity of polystyrene particles increased with amounts of methyl group in vinyl monomer.

Reactions of Metal Catalysts with Polar Vinyl Monomers

  • Jordan Richard F.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.153-154
    • /
    • 2006
  • The development of metal catalysts that can polymerize or copolymerize "polar" $Ch_2=CHX$ monomers by insertion mechanisms would significantly expand the scope of metal-catalyzed polymerization and enable the synthesis of new materials with enhanced properties. We have studied the reactions of single-site olefin polymerization catalysts with vinyl chloride, acrylonitrile, and vinyl ethers, in order to probe monomer coordination trends, insertion rates and regioselectivity, and the structures and reactivity of metal alkyls that contain functional groups on the alpha and beta positions of the alkyl chain. These studies provide insights to the key issues that underlie the "polar monomer" problem. Copolymerization of olefins and selected vinyl ethers has been achieved.

  • PDF

Template polymerization of multi-vinyl monomer with poly(2-hydroxyethyl methacrylate) backbone

  • Saito, Reiko;Yoko, Kazutaka;Iijima, Yuki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.323-323
    • /
    • 2006
  • Multi-vinyl monomer, which contains many vinyl groups in a molecule, was prepared by esterification of hydroxyl groups of poly(2-hydroxyethyl methacrylate) with methacryloyl chloride. Then, copper-mediated atom transfer radical polymerization was carried out as a template polymerization. The propagation of polymerization was investigated by kinetic analysis.

  • PDF

Chain Transfer to Monomer and Polymer in the Radical Polymerization of Vinyl Neo-decanoate

  • Balic, Robert;Fellows, Christopher M.;Van Herk, Alex M.
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.325-335
    • /
    • 2004
  • Molecular weight distributions of poly(vinyl neo-decanoate) produced by the bulk polymerization of the monomer to low conversions were investigated to obtain values of the rate constants for the chain transfer to monomer ( $C_{M}$). The value of $C_{M}$ of 7.5($\pm$0.6)${\times}$10$^{-4}$ was obtained from a logarithmic plot of the number distribution at 5,25, and 5$0^{\circ}C$, which suggests that the activation energy for chain transfer is on the order of 20-25 kJ ㏖$^{-1}$ . These plots were linear between the number and weight-average degrees of polymerization, but not over the whole molecular weight range for which a significant signal was observed in the gel permeation chromatography (GPC) trace. Modeling suggests that the deviations observed at high molecular weights can be explained by branching of the chains through chain transfer to the polymer, with a branching density as low as 10$^{-5}$ , without affecting the slope at low values of the number of monomer unit, N. This deviation from the expected distribution of linear chains was used to estimate the branching densities at low conversion.ion.

Living cationic polymerization of poly (isobutyl vinyl ether) and PVA derived therefrom

  • Mah, Soukil
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.1-2
    • /
    • 2003
  • Some new synthetic routes for the preparation of poly (isobutyl vinyl ether) (P(IBVE)) having a controllable molar mass with narrow distribution via catalytic or photoinduced living cationic polymerization and their conversion to corresponding PVA have been developed. It was found that the combination of iodomethyl methyl ether (IMME)-zinc iodide is effective in the initiation of the catalytic and the various combinations of diphenyliodonium halides, well known photocationic initiators (DPIX) with zinc halides (ZnX$_2$) are also useful in photoinduced living cationic polymerization of isobutyl vinyl ether (IBVE). Polymerization both in the catalytic and photoinduced systems precede until the full consumption of the monomer and the rate of polymerization increases as the concentration of the catalyst or photoinitiator. The number average molar mass of the resulting polymer is proportional with % conversion, which is determined by the ratio of monomer consumed and the initial values of the catalyst or initiator. The living nature was also confirmed by subsequent monomer addition technique.

  • PDF

Synthesis of Novel Silicone Containing Vinylic Monomer and Its Uses in the Waterborne Polyurethane-Veova/Vinyl Acetate Hybrid Emulsion Copolymers (비닐단량체를 함유한 새로운 실리콘의 합성과 수성 Polyurethane-Veova/Vinyl Acetate 하이브리드 에멀젼 공중합체 내에서 사용)

  • Naghash, Hamid Javaherian;Naeni, Elham Kasaeian
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.409-418
    • /
    • 2011
  • A novel silicone (Si) containing vinylic monomer, N-(3-(triethoxysilyl)propyl) methacrylamide (TESPMA), based on 3-aminopropyltriethoxysilane (APTES) and methacryloyl chloride (MCl) has been synthesized for formulation of waterborne polyurethane (WPU). Two types of vinyl group containing Si, methacryloxypropyltriethoxysilane (MPTES) and triethoxyvinylsilane (TEVS), have been used as coupling reagents for comparison of the effects of Si kinds with TESPMA on the WPU. A series of new siliconized WPU, vinyl acetate/vinyl ester of versatic acid (VAc-Veova), TESPMA, MPTES and TEVS hybrid latexes have been successfully prepared by emulsion polymerization in the presence of WPU dispersion.

Studies on Synthesis of Acrylic Water Borne Polymer;Synthesis of Poly(vinyl acetate) and Poly(vinyl acetate-co-2-ethylhexyl acrylate) (Aerylic Water Borne Polymer의 합성 연구;Poly(vinyl acetate)와 poly(vinyl acetate-co-2-ethylhexyl acrylate)의 합성 연구)

  • Kim, Sang-Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.77-84
    • /
    • 1996
  • Poly(vinyl acetate)와 poly(vinyl acetate-co-2-ethylhexyl acrylate)를 여러 조건에서 semicontinuous emulsion 중합으로 합성하였다. Overall conversion, emulsion 입자크기, pH, 점도 등을 합성한 두 emulsion polymer에 대해 측정하였다. Vinyl acetate monomer에 2-ethylhexyl acrylate를 도입함으로서 emulsion 입도, 점도, 중합 속도, 유리 전이 속도가 감소함을 확인하였다.

Critical Syndiotacticity Required for In-Situ Fibrillation of Poly(vinyl Alcohol) during Saponification of Poly(vinyl Ester)

  • Lyoo, Won-Seok;John Blackwell
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.130-134
    • /
    • 1998
  • The physical properties of poly(vinyl alcohol) (PVA) are highly dependent on the degree of syndiotacticity, which is determined primarily by the choice of the vinyl ester monomer precursor. Efforts to produce more syndiotactic PVAs, as well to increase the molecular weight, have centered on the polymerization of vinyl trifluoroacetate,$^1$ vinyl trichloroacetate,$^2$ and vinyl pivalate (VPi).(omitted)

  • PDF

Copolymerization of N-Vinyl Pyrrolidone with Functionalized Vinyl Monomers: Synthesis, Characterization and Reactivity Relationships

  • Vijaykumar, S.;Prasannkumar, S.;Sherigara, B.S.;Shelke, N.B.;Aminabhavi, Tejraj M.;Reddy, B.S.R.
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1003-1009
    • /
    • 2009
  • Copolymers of N-vinylpyrrolidone (NVP) comonomer with styrene (St), hydroxypropyl methacrylate (HPMA) and carboxyphenyl maleimide (CPMI) were synthesized by free radical polymerization using 2,2'-azobisisobutyronitrile (AIBN) initiator in 1,4-dioxane solvent. The copolymers formed were characterized by FTIR, $^1H$ NMR and $^{13}C$ NMR techniques and their thermal properties were studied by DSC and TGA. Copolymer composition was determined by $^1H$ NMR and/or by elemental analysis and monomer reactivity ratios (MRR) were estimated by the linear methods of Kelen-Tudos (K-T) and extended Kelen-Tudos (EK-T) and the non-linear approach. Copolymers of St and HPMA with NVP formed blocks of one of the monomer units, whereas alternating copolymers were obtained in CPMI-NVP, depending upon the side chain substitution. The MRR values are discussed in terms of monomer structural properties such as electronegativity and electron delocalization. The sequence distribution of monomers in the copolymers was studied by statistical method based on the average reactivity ratios obtained by EK-T method.

Study on the Graft Effect in Emulsion Polymerization of Poly(vinyl acetate-co-ethylene) Using Poly(vinyl alcohol) as Emulsifier (Poly(vinyl alcohol)를 이용한 Poly(vinyl acetate-co-ethylene) 에멀젼 중합에서 그라프트 연구)

  • Choi, Yong-Hae
    • Journal of Adhesion and Interface
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • An automated reaction calorimeter was used to directly monitor the rate of emulsion polymerization of vinyl acetate using poly(vinyl alcohol) (PVAs) having different degrees of blockiness. By using this technique in conjunction with other off-line measurements of the evolution of particle size distributions, important details of the process were observed. No constant graft rate period was observed for both low and high initial monomer-water ratios. The gel effect was observed for the low monomer-water ratio recipe. The particle size distributions were broad (particle diameter 40~100 nm) and bimodal. Continuous nucleation was observed to be accompanied by 'limited aggregation' and flocculation during the particle growth stages. It was speculated to be due to the occurrence of the extensive 'limited aggregation' and chain transfer to PVA leading to grafting.