• Title/Summary/Keyword: video recognition

Search Result 696, Processing Time 0.024 seconds

Fall Detection Algorithm Based on Machine Learning (머신러닝 기반 낙상 인식 알고리즘)

  • Jeong, Joon-Hyun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.226-228
    • /
    • 2021
  • We propose a fall recognition system using the Pose Detection of Google ML kit using video data. Using the Pose detection algorithm, 33 three-dimensional feature points extracted from the body are used to recognize the fall. The algorithm that recognizes the fall by analyzing the extracted feature points uses k-NN. While passing through the normalization process in order not to be influenced in the size of the human body within the size of image and image, analyzing the relative movement of the feature points and the fall recognizes, thirteen of the thriteen test videos recognized the fall, showing an 100% success rate.

  • PDF

Airborne Video as a Remote Sensor for Linear Target : Academic Research and Field Practices (선형지상물체에 대한 원격센서로서의 항공비디오 : 연구추세 및 실무에서 사용현황)

  • 엄정섭
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.159-174
    • /
    • 1999
  • An important aspect of remote sensing research would be ultimately the production of research output so that operational people can directly use it. However, for the strip target, it is not certain how the research output in remote sensing helps the field user in adopting and utilizing the technology successfully. The relative limitation of traditional remote sensing systems for such a linear application is briefly discussed and the strength of videography are highlighted. Based on the postulated advantages of video as corridor sensor, a careful and extensive investigation has been made of research trends for airborne videography to identify how past research matches to demand of field clients. It is found that while video has been operationally used for strip target in field client communities, much research effort has been directed to area target, and relatively little towards the classification and monitoring of linear target. From this critical review, a very important step has been made concerning the practicality of airborne videography. The value of this paper is warranted in proposing a new concept of video strip monitoring(VSM) as future research direction in recognition of sensor characteristics and limitations. Ultimately, the suggestion in this paper will greatly contribute to opening new possibilities for implementing VSM, proposed as an initial aim of this paper.

Effects of Spatio-temporal Features of Dynamic Hand Gestures on Learning Accuracy in 3D-CNN (3D-CNN에서 동적 손 제스처의 시공간적 특징이 학습 정확성에 미치는 영향)

  • Yeongjee Chung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.145-151
    • /
    • 2023
  • 3D-CNN is one of the deep learning techniques for learning time series data. Such three-dimensional learning can generate many parameters, so that high-performance machine learning is required or can have a large impact on the learning rate. When learning dynamic hand-gestures in spatiotemporal domain, it is necessary for the improvement of the efficiency of dynamic hand-gesture learning with 3D-CNN to find the optimal conditions of input video data by analyzing the learning accuracy according to the spatiotemporal change of input video data without structural change of the 3D-CNN model. First, the time ratio between dynamic hand-gesture actions is adjusted by setting the learning interval of image frames in the dynamic hand-gesture video data. Second, through 2D cross-correlation analysis between classes, similarity between image frames of input video data is measured and normalized to obtain an average value between frames and analyze learning accuracy. Based on this analysis, this work proposed two methods to effectively select input video data for 3D-CNN deep learning of dynamic hand-gestures. Experimental results showed that the learning interval of image data frames and the similarity of image frames between classes can affect the accuracy of the learning model.

Enterprise Human Resource Management using Hybrid Recognition Technique (하이브리드 인식 기술을 이용한 전사적 인적자원관리)

  • Han, Jung-Soo;Lee, Jeong-Heon;Kim, Gui-Jung
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.333-338
    • /
    • 2012
  • Human resource management is bringing the various changes with the IT technology. In particular, if HRM is non-scientific method such as group management, physical plant, working hours constraints, personal contacts, etc, the current enterprise human resources management(e-HRM) appeared in the individual dimension management, virtual workspace (for example: smart work center, home work, etc.), working time flexibility and elasticity, computer-based statistical data and the scientific method of analysis and management has been a big difference in the sense. Therefore, depending on changes in the environment, companies have introduced a variety of techniques as RFID card, fingerprint time & attendance systems in order to build more efficient and strategic human resource management system. In this paper, time and attendance, access control management system was developed using multi camera for 2D and 3D face recognition technology-based for efficient enterprise human resource management. We had an issue with existing 2D-style face-recognition technology for lighting and the attitude, and got more than 90% recognition rate against the poor readability. In addition, 3D face recognition has computational complexities, so we could improve hybrid video recognition and the speed using 3D and 2D in parallel.

Design and Implementation of a Real-Time Lipreading System Using PCA & HMM (PCA와 HMM을 이용한 실시간 립리딩 시스템의 설계 및 구현)

  • Lee chi-geun;Lee eun-suk;Jung sung-tae;Lee sang-seol
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.11
    • /
    • pp.1597-1609
    • /
    • 2004
  • A lot of lipreading system has been proposed to compensate the rate of speech recognition dropped in a noisy environment. Previous lipreading systems work on some specific conditions such as artificial lighting and predefined background color. In this paper, we propose a real-time lipreading system which allows the motion of a speaker and relaxes the restriction on the condition for color and lighting. The proposed system extracts face and lip region from input video sequence captured with a common PC camera and essential visual information in real-time. It recognizes utterance words by using the visual information in real-time. It uses the hue histogram model to extract face and lip region. It uses mean shift algorithm to track the face of a moving speaker. It uses PCA(Principal Component Analysis) to extract the visual information for learning and testing. Also, it uses HMM(Hidden Markov Model) as a recognition algorithm. The experimental results show that our system could get the recognition rate of 90% in case of speaker dependent lipreading and increase the rate of speech recognition up to 40~85% according to the noise level when it is combined with audio speech recognition.

  • PDF

Implementation of Character and Object Metadata Generation System for Media Archive Construction (미디어 아카이브 구축을 위한 등장인물, 사물 메타데이터 생성 시스템 구현)

  • Cho, Sungman;Lee, Seungju;Lee, Jaehyeon;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1076-1084
    • /
    • 2019
  • In this paper, we introduced a system that extracts metadata by recognizing characters and objects in media using deep learning technology. In the field of broadcasting, multimedia contents such as video, audio, image, and text have been converted to digital contents for a long time, but the unconverted resources still remain vast. Building media archives requires a lot of manual work, which is time consuming and costly. Therefore, by implementing a deep learning-based metadata generation system, it is possible to save time and cost in constructing media archives. The whole system consists of four elements: training data generation module, object recognition module, character recognition module, and API server. The deep learning network module and the face recognition module are implemented to recognize characters and objects from the media and describe them as metadata. The training data generation module was designed separately to facilitate the construction of data for training neural network, and the functions of face recognition and object recognition were configured as an API server. We trained the two neural-networks using 1500 persons and 80 kinds of object data and confirmed that the accuracy is 98% in the character test data and 42% in the object data.

Automated Modelling of Ontology Schema for Media Classification (미디어 분류를 위한 온톨로지 스키마 자동 생성)

  • Lee, Nam-Gee;Park, Hyun-Kyu;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.44 no.3
    • /
    • pp.287-294
    • /
    • 2017
  • With the personal-media development that has emerged through various means such as UCC and SNS, many media studies have been completed for the purposes of analysis and recognition, thereby improving the object-recognition level. The focus of these studies is a classification of media that is based on a recognition of the corresponding objects, rather than the use of the title, tag, and scripter information. The media-classification task, however, is intensive in terms of the consumption of time and energy because human experts need to model the underlying media ontology. This paper therefore proposes an automated approach for the modeling of the media-classification ontology schema; here, the OWL-DL Axiom that is based on the frequency of the recognized media-based objects is considered, and the automation of the ontology modeling is described. The authors conducted media-classification experiments across 15 YouTube-video categories, and the media-classification accuracy was measured through the application of the automated ontology-modeling approach. The promising experiment results show that 1500 actions were successfully classified from 15 media events with an 86 % accuracy.

Face Tracking and Recognition on the arbitrary person using Nonliner Manifolds (비선형적 매니폴드를 이용한 임의 얼굴에 대한 얼굴 추적 및 인식)

  • Ju, Myung-Ho;Kang, Hang-Bong
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.342-347
    • /
    • 2008
  • Face tracking and recognition are difficult problems because the face is a non-rigid object. If the system tries to track or recognize the unknown face continuously, it can be more hard problems. In this paper, we propose the method to track and to recognize the face of the unknown person on video sequences using linear combination of nonlinear manifold models that is constructed in the system. The arbitrary input face has different similarities with different persons in system according to its shape or pose. Do we can approximate the new nonlinear manifold model for the input face by estimating the similarities with other faces statistically. The approximated model is updated at each frame for the input face. Our experimental results show that the proposed method is efficient to track and recognize for the arbitrary person.

  • PDF

A Study on the Multiple Texture Rendering System for 3D Image Signal Recognition (3차원 영상인식을 위한 다중영상매핑 시스템에 대한 연구)

  • Kim, Sangjune;Park, Chunseok
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.1
    • /
    • pp.47-53
    • /
    • 2016
  • Techniques to be developed in this study is intended to apply to an existing integrated control system to "A Study on the multiple Texture Rendering system for three-dimensional Image Signal Recognition" technology or become a center of the building control system in real time video. so, If the study plan multi-image mapping system developed, CCTV camera technology and network technology alone that is, will be a number of security do not have to build a linked system personnel provide services that control while the actual patrol, the other if necessary systems and linked to will develop a system that can reflect the intention Ranger.

Smart Fire Image Recognition System using Charge-Coupled Device Camera Image (CCD 카메라 영상을 이용한 스마트 화재 영상 인식 시스템)

  • Kim, Jang-Won
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.77-82
    • /
    • 2013
  • This research suggested smart fire recognition system which trances firing location with CCD camera with wired/wire-less TCP/IP function and Pan/Tilt function, delivers information in real time to android system installed by smart mobile communication system and controls fire and disaster remotely. To embody suggested method, firstly, algorithm which applies hue saturation intensity (HSI) Transform for input video, eliminates surrounding lightness and unnecessary videos and segmentalized only firing videos was suggested. Secondly, Pan/Tilt function traces accurate location of firing for proper control of firing. Thirdly, android communication system installed by mobile function confirms firing state and controls it. To confirm the suggested method, 10 firing videos were input and experiment was conducted. As the result, all of 10 videos segmentalized firing sector and traced all of firing locations.