• 제목/요약/키워드: video microscopy

검색결과 30건 처리시간 0.023초

Multispectral intravital microscopy for simultaneous bright-field and fluorescence imaging of the microvasculature

  • Barry G. H. Janssen;Mohamadreza Najiminaini;Yan Min Zhang;Parsa Omidi;Jeffrey J. L. Carson
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.12.1-12.12
    • /
    • 2021
  • Intravital video microscopy permits the observation of microcirculatory blood flow. This often requires fluorescent probes to visualize structures and dynamic processes that cannot be observed with conventional bright-field microscopy. Conventional light microscopes do not allow for simultaneous bright-field and fluorescent imaging. Moreover, in conventional microscopes, only one type of fluorescent label can be observed. This study introduces multispectral intravital video microscopy, which combines bright-field and fluorescence microscopy in a standard light microscope. The technique enables simultaneous real-time observation of fluorescently-labeled structures in relation to their direct physical surroundings. The advancement provides context for the orientation, movement, and function of labeled structures in the microcirculation.

Measurement of Sub-micrometer Features Based on The Topographic Contrast Using Reflection Confocal Microscopy

  • Lee SeungWoo;Kang DongKyun;Yoo HongKi;Kim TaeJoong;Gweon Dae-Gab;Lee Suk-Won;Kim Kwang-Soo
    • Journal of the Optical Society of Korea
    • /
    • 제9권1호
    • /
    • pp.26-31
    • /
    • 2005
  • We describe the design and the implementation of video-rate reflection confocal scanning microscopy (CSM) using an acousto-optical deflector (AOD) for the fast horizontal scan and a galvanometer mirror (GM) for the slow vertical scan. Design parameters of the optical system are determined for optimal resolution and contrast. The OSLO simulations show that the performances of CSM are not changed with deflection angle and the wavefront errors of the system are less than 0.012λ. To evaluate the performances of designed CSM, we do a series of tests, measuring lateral and axial resolution, real time image acquisition. Due to a higher axial resolution compared with conventional microscopy, CSM can detect the surface of sub-micrometer features. We detect 138㎚ line shape pattern with a video-rate (30 frm/sec). And 10㎚ axial resolution is archived. The lateral resolution of the topographic images will be further enhanced by differential confocal microscopy (DCM) method and computational algorithms.

Time-Lapse Video Microscopy of Wound Recovery and Reproduction in the Siphonous Green Alga Derbesia tenuissima

  • ;;김광훈
    • ALGAE
    • /
    • 제21권1호
    • /
    • pp.109-124
    • /
    • 2006
  • Responses to various types of mechanically induced wounding were followed in the giant-celled Caulerpalean species, Derbesia tenuissima, using time-lapse video-microscopy. Gametophyte vesicle cells. Puncture wounding: the gametophyte cell seals the puncture in 5 min. This is followed by cycles of ruptures and sealing, ending with full recovery in 24 hrs. Cut wounding: the protoplast immediately retracts away from the wall and reforms an intact, deflated protoplast that expands to fill the original cell within 21 hrs. Crush wounding (internal). When retained within the cell wall many protoplast fragments condense, round up, and coalesce; the reconstituted protoplast expands until it attains complete recovery, filling the original cell shape in 12 hrs. Crush wounding (external). Protoplast fragments extruded from the crushed cell are more numerous and smaller taking longer to recover. Most fragments become spherical, transforming into small viable cells capable of reproduction in several days. Sporophyte filaments. Crush wounding creates many small fragments that initially condense, coalesce and then expand within the wall to restore a complete filament with normal cytoplasmic streaming within 5 hrs. Reproduction: gametophyte. Our culture isolates produce more females than males (30:1). Gametangia develop one day before discharge that occurs explosively (1/6 sec) at first morning light. The vesicle cell forms successive gametangia every 14 days. Sporophyte. Each sporangium develops on a lateral branch that becomes isolated by the creation of successive basal plugs. After cytoplasmic cleavage and differentiation the stephanokont spores are discharged. The spores settle quickly and germinate forming gametophyte cells.

실시간 TEM 분석에 유용한 영상 기록 프로그램, VirtualDub (VirtualDub as a Useful Program for Video Recording in Real-time TEM Analysis)

  • 김진규;오상호;송경;유승조;김영민
    • Applied Microscopy
    • /
    • 제40권1호
    • /
    • pp.47-51
    • /
    • 2010
  • The capability of real-time observation in TEM is quite useful to study dynamic phenomena of materials in a certain variable ambience. In performing the experiment, the choice of video recording program is an important factor to obtain high quality of movie streaming. Window Movie Maker (WMM) is generally recommended as a default video recording program if one uses "DV Capture" function in DigitalMicrograph$^{TM}$ (DM) software. However, the image quality does not often satisfy the condition for high-resolution microscopic analysis since the severe information loss in the final result occurs during the conversion process. As a good candidate to overcome this problem, Virtual-Dub is highly recommended since the information loss can be minimized through the streaming process. In this report, we demonstrated how useful VirtualDub works in a high-resolution movie recording. Quantitative comparison of the information quality between the images recorded by each software, WMM and VirtualDub, was carried out based on histogram analysis. As a result, the image recorded by VirtualDub was improved ~13% in brightness and ~122% in contrast compared with the image obtained by WMM at the same imaging condition. Remarkably, the gray gradation (meaning an amount of information) becomes wider up to ~115% than that of the WMM result.

스테이지 구동방식 주사형정전용량 현미경 (Scanning Capacitance Microscope by Stage Driving)

  • Kim Eung Kyeu
    • 전자공학회논문지B
    • /
    • 제31B권7호
    • /
    • pp.101-107
    • /
    • 1994
  • In this work a scanning capacitance microscopy(SCaM) by stage driving is proposed and presented some of the experimental results.SCaM is a microscope which scans a surface of materials mechanically in two or two point five dimensions by a capacitance probe with a few tenth $\mu\textrm{m}$ ize tip, and display images of the surface shape or capacitive distribution. The present target of the SCaM is 0.1$\mu\textrm{m}$ resolution power which exceeds that of optical microscope. This will become a powerful tool for inspecting ULSI pattern etched by X-ray biological data etc. The experimental system is composed based on a VHD video disk which captures the capacitance changes of the video disk surface and converts it into video signal.

  • PDF

Particle Image Velocimetry of the Blood Flow in a Micro-channel Using the Confocal Laser Scanning Microscope

  • Kim, Wi-Han;Kim, Chan-Il;Lee, Sang-Won;Lim, Soo-Hee;Park, Cheol-Woo;Lee, Ho;Park, Min-Kyu
    • Journal of the Optical Society of Korea
    • /
    • 제14권1호
    • /
    • pp.42-48
    • /
    • 2010
  • We used video-rate Confocal Laser Scanning Microscopy (CLSM) to observe the motion of blood cells in a micro-channel. Video-rate CLSM allowed us to acquire images at the rate of 30 frames per second. The acquired images were used to perform Particle Image Velocimetry (PIV), thus providing the velocity profile of the blood in a micro-channel. While previous confocal microscopy-assisted PIV required exogenous micro/nano particles as the tracing particles, we employed blood cells as tracing particles for the CLSM in the reflection mode, which uses light back-scattered from the sample. The blood flow at various depths of the micro-channel was observed by adjusting the image plane of the microscope. The velocity profile at different depths of the channel was measured. The confocal micro-PIV technique used in the study was able to measure blood velocity up to a few hundreds ${\mu}m/sec$, equivalent to the blood velocity in the capillaries of a live animal. It is expected that the technique presented can be applied for in vivo blood flow measurement in the capillaries of live animals.

Recent advances in intravital microscopy for investigation of dynamic cellular behavior in vivo

  • Choo, Yeon Woong;Jeong, Juhee;Jung, Keehoon
    • BMB Reports
    • /
    • 제53권7호
    • /
    • pp.357-366
    • /
    • 2020
  • Currently, most biological research relies on conventional experimental techniques that allow only static analyses at certain time points in vitro or ex vivo. However, if one could visualize cellular dynamics in living organisms, that would provide a unique opportunity to study key biological phenomena in vivo. Intravital microscopy (IVM) encompasses diverse optical systems for direct viewing of objects, including biological structures and individual cells in live animals. With the current development of devices and techniques, IVM addresses important questions in various fields of biological and biomedical sciences. In this mini-review, we provide a general introduction to IVM and examples of recent applications in the field of immunology, oncology, and vascular biology. We also introduce an advanced type of IVM, dubbed real-time IVM, equipped with video-rate resonant scanning. Since the realt-ime IVM can render cellular dynamics with high temporal resolution in vivo, it allows visualization and analysis of rapid biological processes.

파장 코딩된 실시간 슬릿 공초점 현미경의 설계 (Design of spectrally encoded real-time slit confocal microscopy)

  • 김정민;강동균;권대갑
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.576-580
    • /
    • 2005
  • New real-time confocal microscopy using spectral encoding technique and slit confocal aperture is proposed and designed. Spectral encoding technique, which encodes one-dimensional spatial information of a specimen in wavelength, and slit aperture make it possible to obtain two-dimensional lateral image of the specimen simultaneously at standard video rates without expensive scanning units such as polygon mirrors and galvano mirrors. The working principle and the configuration of the system are explained. The variation in axial responses for the simplified model of the system with normalized slit width is numerically analyzed based on the wave optics theory. Slit width that directly affects the depth discrimination of the system is determined by a compromise between axial resolution and signal intensity from the simulation result. On the assumption of the lateral sampling resolution of 50 nm, design variables and governing equations of the system are derived. The system is designed to have the mapping error less than the half pixel size, to be diffraction-limited and to have the maximum illumination efficiency. The designed system has the FOV of $12.8um{\times}9.6um$, the theoretical axial FWHM of 1.1 um and the lateral magnification of-367.8.

  • PDF

Three-Dimensional Video Microscopy: Potential for Improved Ergonomics without Increased Operative Time?

  • Yasmina Samaha;Edward Ray
    • Archives of Plastic Surgery
    • /
    • 제50권1호
    • /
    • pp.125-129
    • /
    • 2023
  • Three-dimensional (3D) video exoscopes are high-magnification stereo cameras that project onto monitors mounted in the operating room, viewable from different angles. Outside of plastic surgery, exoscopes have been shown to successfully improve the ergonomics of microsurgery, though sometimes with prolonged operating times. We compare a single surgeon's early experience performing free flap procedures from 2020 to 2021 using either a binocular microscope or a 3D video exoscope. Ten procedures were performed with the standard operating microscope and 8 procedures with the 3D exoscope. The microsurgeon, having minimal prior experience using an exoscope, reported less neck discomfort following the free flap procedures performed with the exoscope compared with the binocular surgical microscope. Total average operating time was comparable between the standard surgical microscope and the 3D exoscope (13.7 vs. 13.4 hours, p = 0.34). Our early experience using a 3D exoscope in place of a standard optical microscope demonstrated that the exoscope shows promise, offering an ergonomic alternative during microvascular reconstruction without increasing overall operating times. Future studies will compare free flap ischemia time between cases performed using the exoscope and the conventional binocular microscope. Medical Subject Headings authorized following words: free tissue flaps; operating rooms; ergonomics; microsurgery.