The quality of experience (QoE) of video streaming is degraded by playback interruptions, which can be mitigated by the playout buffers of end users. To analyze the impact of playout buffer dynamics on the QoE of wireless adaptive hypertext transfer protocol (HTTP) progressive video, we model the playout buffer as a G/D/1 queue with an arbitrary packet arrival rate and deterministic service time. Because all video packets within a block must be available in the playout buffer before that block is decoded, playback interruption can occur even when the playout buffer is non-empty. We analyze the queue length evolution of the playout buffer using diffusion approximation. Closed-form expressions for user-perceived video quality are derived in terms of the buffering delay, playback duration, and interruption probability for an infinite buffer size, the packet loss probability and re-buffering probability for a finite buffer size. Simulation results verify our theoretical analysis and reveal that the impact of playout buffer dynamics on QoE is content dependent, which can contribute to the design of QoE-driven wireless adaptive HTTP progressive video management.
Han, Longzhe;Maksymyuk, Taras;Bao, Xuecai;Zhao, Jia;Liu, Yan
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.9
/
pp.4572-4586
/
2019
Mobile Edge Computing (MEC) and Information-Centric Networking (ICN) are essential network architectures for the future Internet. The advantages of MEC and ICN such as computation and storage capabilities at the edge of the network, in-network caching and named-data communication paradigm can greatly improve the quality of video streaming applications. However, the packet loss in wireless network environments still affects the video streaming performance and the existing loss recovery approaches in ICN does not exploit the capabilities of MEC. This paper proposes a Deep Learning based Loss Recovery Mechanism (DL-LRM) for video streaming over MEC based ICN. Different with existing approaches, the Forward Error Correction (FEC) packets are generated at the edge of the network, which dramatically reduces the workload of core network and backhaul. By monitoring network states, our proposed DL-LRM controls the FEC request rate by deep reinforcement learning algorithm. Considering the characteristics of video streaming and MEC, in this paper we develop content caching detection and fast retransmission algorithm to effectively utilize resources of MEC. Experimental results demonstrate that the DL-LRM is able to adaptively adjust and control the FEC request rate and achieve better video quality than the existing approaches.
Purpose: This study examined the effects of the type of video contents used for action observations on the ability to control posture. Methods: The participants were 48 healthy adults. The two hands of the participants were crossed on both shoulders, and the other foot was placed in a straight line in front of the target to allow them to watch a video of the monitor. The videos were presented in random order with three video contents (natural, stable balance posture, and unstable balance posture) consisting of 30 seconds each. A 15-second resting time was given between each video. During action observation using various video content forms, the posture control ability was measured using a TekScan MetScan® system. Results: The results revealed statistically significant differences in the area of movement and the distance by COP and distance by the type of action-observation videos, and the distance by the anteroposterior and mediolateral sides (p<0.05). The stable balance posture and unstable balance posture video showed significant differences in the distance by the COP, anteroposterior, and mediolateral distance. (p<0.05) Conclusion: This study suggests that choosing the contents of the videos is important during action-observation training, and action-observation training can help improve postural control.
Starting from the content types of video advertisements produced by social media users, this paper conducts a comparative study on the information and entertainment video advertising effects of the same product, to help video producers achieve better advertising effects when facing different products. Experimental results show that. In Garment, the information is higher than that of entertainment in terms of advertising cognition. In terms of advertising attitude and purchase intention, the entertainment is higher than that of information; in food, the entertainment is higher than that of information in terms of advertising cognition, advertising attitude, and purchase intention; in household items, the entertainment is higher than that of information; in terms of advertising cognition and purchase intention, the information is higher than that of entertainment; in terms of advertising attitude, the entertainment is higher than that of information; in cosmetics, the information is higher than that of entertainment in terms of advertising cognition; in terms of advertising attitude and purchase intention, the entertainment is higher than that of the information; in digital accessories, the information is higher than that of the entertainment in terms of advertising cognition, advertising attitude and purchase intention.
In order to understand the recommendation algorithm applied to the online video platform, this study examines the relationship between the content characteristics of K-pop music videos and related videos recommended for playback on YouTube, and analyses which videos are recommended as related videos through network analysis. As a result, the more liked videos, the higher recommendation ranking and most of the videos belonging to the same channel or produced by the same agency were recommended as related videos. As a result of the network analysis of the related video, the network of K-pop music video is strongly formed, and the BTS music video is highly centralized in the network analysis of the related video. These results suggest that the network between K-pops is strong, so when you enter K-pop as a search query and watch videos, you can enjoy K-pop continuously. But when watching other genres of video, K-pop may not be recommended as a related video.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.12
/
pp.8649-8653
/
2015
A number of video indexing and retrieval algorithms have been proposed to manage large video databases efficiently. The video similarity measure is one of most important technical factor for video content management system. In this paper, we propose the luminance characteristics model to measure the video similarity efficiently. Most algorithms for video indexing have been commonly used histograms, edges, or motion features, whereas in this paper, the proposed algorithm is employed an efficient similarity measure using the luminance projection. To index the video sequences effectively and to reduce the computational complexity, we calculate video similarity using the key frames extracted by the cumulative measure, and compare the set of key frames using the modified Hausdorff distance. Experimental results show that the proposed luminance projection model yields the remarkable improved accuracy and performance than the conventional algorithm such as the histogram comparison method, with the low computational complexity.
Lee Gwang-Gook;Kang Jung-Won;Kim Jae-Gon;Kim Whoi-Yul
Journal of Broadcast Engineering
/
v.11
no.1
s.30
/
pp.28-41
/
2006
Due to the rapid development of multimedia appliances, the increasing amount of multimedia data enforces the development of automatic video analysis techniques. In this paper, a method of ToC generation is proposed for educational video contents. The proposed method consists of two parts: scene segmentation followed by scene annotation. First, video sequence is divided into scenes by the proposed scene segmentation algorithm utilizing the characteristics of educational video. Then each shot in the scene is annotated in terms of scene type, existence of enclosed caption and main speaker of the shot. The ToC generated by the proposed method represents the structure of a video by the hierarchy of scenes and shots and gives description of each scene and shot by extracted features. Hence the generated ToC can help users to perceive the content of a video at a glance and. to access a desired position of a video easily. Also, the generated ToC automatically by the system can be further edited manually for the refinement to effectively reduce the required time achieving more detailed description of the video content. The experimental result showed that the proposed method can generate ToC for educational video with high accuracy.
With the growth of the Internet, multimedia streaming becomes an important means to deliver video contents over the Internet and the amount of the streaming multimedia contents is also getting increased. However, it becomes difficult to guarantee the quality of service in real-time over the IP network environment with instantaneously varying bandwidth. In this paper, we propose an optimal adaptation framework for streaming contents over the Internet in the sense that the perceptual quality of the multi-angie content with multiple visual objects is maximized given the constraints such as available bandwidth and transcoding cost. In the multi-angle video service framework, the user can select his/her preferred alternate views among the given multiple video streams captured at different view angles for a same event. This enhanced experience often entails streaming problems in real-time over the network, such as instantaneous bandwidth changes in the Internet. In order to cope with this problem, we assume that multi-angle video contents are encoded at different bitrates and the appropriate video streams are then selected or transcoded for delivery to meet such bandwidth constraints. For the user selective consumption of the various bitstreams in the multi-angle video service, the bitstream in each angle can be encoded in various bitrate, and the user can select a sub-bitrstream in the given bitrstreams or transcode the corresponding content in order to deliver the optimally adapted video contents to the instantaneously changing network condition. Therefore, we define the transcoding cost which means the time taken for transcoding the video stream and formulate a unified optimization framework which maximizes the perceptual quality of the multiple video objects in the given constraints such as the transcoding cost and the network bandwidth. Finally, we present plenty of the experimental results to show the effectiveness of the proposed method.
The Journal of Korean Institute of Communications and Information Sciences
/
v.40
no.9
/
pp.1776-1785
/
2015
Content Centric Network (CCN) has been introduced as a new paradigm due to a shift of users's perspective of using Internet from host-centric to content-centric. On the other hand, a demand for video streaming has been increasing. Thus, Adaptive streaming has been introduced and researched for achieving higher user's satisfaction. If an architecture of Internet is replaced with CCN architecture, it is necessary to consider adaptive video streaming in CCN according to the demand of users. However, if the same rate decision algorithm used in Internet is deployed in CCN, there are a limitation of utilizing content store (CS) in CCN router and a problem of reflecting dynamic requirements. Therefore, this paper presents a framework adequate to CCN protocol and cache utilization, adapting content naming method of exploiting regular expression to the rate decision algorithm of the existing adaptive streaming. In addition, it also improves the quality of video streaming and verifies the performance through dynamic expression strategies and selection algorithm of the strategies.
The method of Content-based Triangular Mesh Image representation in moving pictures makes better performance in prediction error ratio and visual efficiency than that of classical block matching. Specially if background and objects can be separated from image, the objects are designed by Irregular mesh. In this case this irregular mesh design has an advantage of increasing video coding efficiency. This paper presents the techniques of mesh generation, motion estimation using these mesh, uses image warping transform such as Affine transform for image reconstruction, and evaluates the content based mesh design through computer simulation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.