• Title/Summary/Keyword: video compression standard

Search Result 172, Processing Time 0.022 seconds

A Fast TU Size Decision Method for HEVC RQT Coding

  • Wu, Jinfu;Guo, Baolong;Yan, Yunyi;Hou, Jie;Zhao, Dan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2271-2288
    • /
    • 2015
  • The emerging high efficiency video coding (HEVC) standard adopts the quadtree-structured transform unit (TU) in the residual quadtree (RQT) coding. Each TU allows to be split into four equal sub-TUs recursively. The RQT coding is performed for all the possible transform depth levels to achieve the highest coding efficiency, but it requires a very high computational complexity for HEVC encoders. In order to reduce the computational complexity requested by the RQT coding, in this paper, we propose a fast TU size decision method incorporating an adaptive maximum transform depth determination (AMTD) algorithm and a full check skipping - early termination (FCS-ET) algorithm. Because the optimal transform depth level is highly content-dependent, it is not necessary to perform the RQT coding at all transform depth levels. By the AMTD algorithm, the maximum transform depth level is determined for current treeblock to skip those transform depth levels rarely used by its spatially adjacent treeblocks. Additionally, the FCS-ET algorithm is introduced to exploit the correlations of transform depth level between four sub-CUs generated by one coding unit (CU) quadtree partitioning. Experimental results demonstrate that the proposed overall algorithm significantly reduces on average 21% computational complexity while maintaining almost the same rate distortion (RD) performance as the HEVC test model reference software, HM 13.0.

Depth Map Pre-processing using Gaussian Mixture Model and Mean Shift Filter (혼합 가우시안 모델과 민쉬프트 필터를 이용한 깊이 맵 부호화 전처리 기법)

  • Park, Sung-Hee;Yoo, Ji-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1155-1163
    • /
    • 2011
  • In this paper, we propose a new pre-processing algorithm applied to depth map to improve the coding efficiency. Now, 3DV/FTV group in the MPEG is working for standard of 3DVC(3D video coding), but compression method for depth map images are not confirmed yet. In the proposed algorithm, after dividing the histogram distribution of a given depth map by EM clustering method based on GMM, we classify the depth map into several layered images. Then, we apply different mean shift filter to each classified image according to the existence of background or foreground in it. In other words, we try to maximize the coding efficiency while keeping the boundary of each object and taking average operation toward inner field of the boundary. The experiments are performed with many test images and the results show that the proposed algorithm achieves bits reduction of 19% ~ 20% and computation time is also reduced.

Design of A Deblocking Filter Based on Macroblock Overlap Scheme for H.264/AVC (H.264/AVC용 매크로블록 겹침 기법에 기반한 디블록킹 필터의 설계)

  • Kim, Won-Sam;Sonh, Seung-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.699-706
    • /
    • 2008
  • H.264/AVC is a new international standard for the compression of video images, in which a deblocking filter has been adopted to remoye blocking artifacts. This paper proposes an efficient architecture of deblocking filter in H.264/AVC. By making good use of data dependence between neighboring $4{\times}4$ blocks, the memory sire is reduced and the throughput of the deblocking filter processing is increased. The designed deblocking filter further enhances the parallelism by simultaneously executing horizontal and vertical filtering within a macroblock in pipeline method and adopting overlap between macroblocks. The implementation result shows that the proposed architecture enhances the performance of deblocking filter processing from 1.75 to 4.23 times than that of the conventional deblocking filter. Hence the Proposed architecture of deblocking filter is able to perform real-time deblocking in high-resolution($2048{\times}1024$) video applications.

Image Adaptive Block DCT-Based Perceptual Digital Watermarking (영상 특성에 적응적인 블록 DCT 기반 지각적 디지털 워터마킹)

  • 최윤희;최태선
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.221-229
    • /
    • 2004
  • We present new digital watermarking scheme that embeds a watermark according to the characteristics of the image or video. The scheme is compatible with established image compression standard. We define a weighting function using a parent-child structure of the DCT coefficients in a block to embed a maximum watermark. The spatio-frequency localization of the DCT coefficients can be achieved with this structure. In the detection stage, we present an optimum a posteriori threshold with a given false detection error probability based on the statistical analysis. Simulation results show that the proposed algorithm is efficient and robust against various signal processing techniques. Especially, they are robust against widely used coding standards, such as JPEG and MPEG.

Design of Low-Area HEVC Core Transform Architecture (저면적 HEVC 코어 변환기 아키텍쳐 설계)

  • Han, Seung-Mok;Nam, Woo-Jin;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.119-128
    • /
    • 2013
  • This paper proposes and implements an core transform architecture, which is one of the major processes in HEVC video compression standard. The proposed core transform architecture is implemented with only adders and shifters instead of area-consuming multipliers. Shifters in the proposed core transform architecture are implemented in wires and multiplexers, which significantly reduces chip area. Also, it can process from $4{\times}4$ to $16{\times}16$ blocks with common hardware by reusing processing elements. Designed core transform architecture in 0.13um technology can process a $16{\times}16$ block with 2-D transform in 130 cycles, and its gate count is 101,015 gates.

DCT-Based Subpixel-Accuracy Motion Estimation Utilizing Shifting Matrix (Shifting Matrix를 이용한 DCT 기반 부화소 단위 움직임 예측 알고리즘)

  • Shin, Jae-Young;Ryu, Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.372-379
    • /
    • 2015
  • The latest video compression standard (such as H.264/AVC and HEVC) utilizes quarter-pel accuracy motion estimation in order to retain detailed motion information. Many sub-pixel motion estimation algorithms used in the spatial domain usually encounters increment of computational complexity due to embedded interpolation algorithm. In this paper, an approach to measure sub-pixel accuracy motion estimation in frequency domain using shifting matrix is proposed. Complexity can be reduced utilizing shifting matrix algorithm in frequency domain and simulation results demonstrate not only higher PSNR but lower bit rates than spatial domain algorithms.

Digital Hologram Compression Technique using Multi-View Prediction based on Image Accumulation (영상집적 기반의 다시점 부호화 기술을 이용한 디지털 홀로그램의 압축 기술)

  • Choi, Hyun-Jun;Seo, Young-Ho;Bae, Jin-Woo;Yoo, Ji-Sang;Kim, Hwa-Sung;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.933-941
    • /
    • 2006
  • In this paper, we proposed an efficient coding method for digital hologram (fringe pattern) acquired by a CCD camera or by computer generation using multi-view prediction technique and MPEG video compression standard technique. It proceeds each R, G, or B color component separately. The basic processing unit is a partial image segmented into the size of $N{\times}N$. Each partial image retains the information of the whole object. This method generates an assembled image for a row of the segmented and frequency-transformed partial images, which is the basis of the coding process. That is, a motion estimation and compensation technique of MPEG is applif:d to the reconstructed images from the assembled images with the disparities found during generation of assembled image and the original partial images. Therefore the compressed results are the disparity of eachpartial image to form the assembled image for the corresponding row, assembled image, and the motion vectors and the compensated image for each partial image. The experimental results with the implemented algorithm showed that the proposed method has NC (Normal Correlation) values about 4% higher than the previous method, by which ours has better compression efficiency. Consequently, the Proposed method is expected to be used effectively in the application areas to transmit the digital hologram data. can be identified in comparison with the previous researches and commercial IPs.

Transform Skip Mode Fast Decision Method for HEVC Encoding (HEVC 부호화를 위한 변환생략 모드 고속 선택 방법)

  • Yang, Seungha;Shim, Hiuk Jae;Lee, Dahee;Jeon, Byeungwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.4
    • /
    • pp.172-179
    • /
    • 2014
  • HEVC (High Efficiency Video Coding) fine-tuned many existing coding tools and adopted also many new coding techniques. As a result, HEVC has accomplished about 2 times of compression efficiency enhancement compared to the existing video coding standard of H.264/AVC. One of the newly adopted tools in HEVC is the transform skip scheme which performs quantization without transform. This technique improves coding efficiency especially with computer-generated images. However, the unavailability of global or local properties of general video signals demands encoder to decide whether performing transform or not for each TU (Transform Unit). The necessity of computing rate-distortion costs for this decision is one reason to increase encoder complexity. In this paper, a fast transform skip mode decision method is proposed, which is based on the fast decision of rate-distortion cost calculation for transform skip mode, by considering frequency characteristics of residual signal. The proposed method can reduce $4{\times}4$ TU encoding time by about 27.1% with only about 0.03% consequential decrement in BDBR.

Development of ATSC3.0 based UHDTV Broadcasting System providing Ultra-high-quality Service that supports HDR/WCG Video and 3D Audio, and a Fixed UHD/Mobile HD Service (HDR/WCG 비디오와 3D 오디오를 지원하는 초고품질 방송서비스와 고정 UHD/이동 HD 방송 서비스를 제공하는 ATSC 3.0 기반 UHDTV 방송 시스템 개발)

  • Ki, Myungseok;Seok, Jinwuk;Beack, Seungkwon;Jang, Daeyoung;Lee, Taejin;Kim, Hui Yong;Oh, Hyeju;Lim, Bo-mi;Bae, Byungjun;Kim, Heung Mook;Choi, Jin Soo
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.829-849
    • /
    • 2017
  • Due to the large-scale TV display, the convergence of broadcasting and broadband, and the advancement of signal compression and transmission technology, terrestrial digital broadcasting has evolved into UHD broadcasting capable of providing simultaneous broadcasting of fixed UHD and mobile HD. The Korean standard for terrestrial UHDTV broadcasting is based on ATSC 3.0, the broadcasting standard of North America. The terrestrial UHDTV broadcasting standard chose that as a new AV codec standard, HEVC video codec which can compress with higher efficiency compared to AVC, and MPEG-H 3D audio codec for realistic audio. Also, DASH and MMT are adopted as transmission format instead of MPEG-2 TS to support broadband as well as broadcasting network, and in order to provide 4K UHD/mobile HD service simultaneously ROUTE multiplexing technology is applied. In this paper, we propose an audio/video encoder, which is required to provide HDR/WCG supported high quality video service, 10.2 channel/4 object supporting stereo sound service, fixed UHD and mobile HD simultaneous broadcasting service based on ATSC3.0, also we implemented the ATSC 3.0 LDM system for ROUTE/DASH packager, multiplexing system and physical layer transmission/reception, and verified the service ability by applying it to real time broadcast environment.

A Hierarchical Group-Based CAVLC Decoder (계층적 그룹 기반의 CAVLC 복호기)

  • Ham, Dong-Hyeon;Lee, Hyoung-Pyo;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.26-32
    • /
    • 2008
  • Video compression schemes have been developed and used for many years. Currently, H.264/AVC is the most efficient video coding standard. The H.264/AVC baseline profile adopts CAVLC(Context-Adaptive Variable Length Coding) method as an entropy coding method. CAVLC gives better performance in compression ratios than conventional VLC(Variable Length Coding). However, because CAVLC decoder uses a lot of VLC tables, the CAVLC decoder requires a lot of area in terms of hardware. Conversely, since it must look up the VLC tables, it gives a worse performance in terms of software. In this paper, we propose a new hierarchical grouping method for the VLC tables. We can obtain an index of codes in the reconstructed VLC tables by simple arithmetic operations. In this method, the VLC tables are accessed just once in decoding a symbol. We modeled the proposed algorithm in C language, compiled under ARM ADS1.2 and simulated it with Armulator. Experimental results show that the proposed algorithm reduces execution time by about 80% and 15% compared with the H.264/AVC reference program JM(Joint Model) 10.2 and the arithmetic operation algorithm which is recently proposed, respectively.