• Title/Summary/Keyword: vibrational energy

Search Result 289, Processing Time 0.034 seconds

Simultaneous Vibrational and Rotational Transitions in HF + Ar (HF와 Ar 衝突中의 振動-回轉遷移)

  • Hyung Kyu Shin
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.12-24
    • /
    • 1974
  • The importance of rotational transitions in the vibrational deexcitation of HF(1${\rightarrow}$0) in HF+Ar collisions has been investigated by a semiclassical three-dimensional approach. Because of the inclusion of rotational transitions, this study gives vibrational transition probabilities which are very large compared to results of conventional vibration-to-translation energy transfer theories. Currently available experimental studies suggest that this effect is important and has to be included in rigorous calculations.

  • PDF

Analysis of Intramolecular Electron Transfer in A Mixed-Valence Cu(Ⅰ)-Cu(Ⅱ) Complex Using the PKS Model

  • So Hyunsoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.385-388
    • /
    • 1992
  • The transition probabilities for the thermal intramolecular electron transfer and the optical intervalence transfer band for a symmetric mixed-valence Cu(I)-Cu(II) compound were used to extract the PKS parameters $\varepsilon$ = -1.15, ${\lambda}$ = 2.839, and ${\nu}g$- = 923 $cm^{-1}$. These parameters determine the potential energy surfaces and vibronic energy levels. Three pairs of vibrational levels are below the top of the energy barrier in the lower potential surface. The contribution of each vibrational state to the intramolecular electron transfer was calculated. It is shown that the three pairs of vibrational states below the top of the barrier are responsible for most of the electron transfer at 261-306 K. So the intramolecular electron transfer in this system is a tunneling process. The transition probability exhibits the usual high-temperature Arrhenius behavior, but at lower temperature falls off to a temperature-independent value as tunneling from the lowest levels becomes the limiting process.

Vibrational Relaxation of Cyanate or Thiocyanate Bound to Ferric Heme Proteins Studied by Femtosecond Infrared Spectroscopy

  • Park, Seongchul;Park, Jaeheung;Lin, Han-Wei;Lim, Manho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.758-764
    • /
    • 2014
  • Femtosecond vibrational spectroscopy was used to measure the vibrational population relaxation time ($T_1$) of different anions bound to ferric myoglobin ($Mb^{III}$) and hemoglobin ($Hb_{III}$) in $D_2O$ at 293 K. The $T_1$ values of the anti-symmetric stretching (${\nu}_1$) mode of NCS in the $NCS^-$ bound to $Mb^{III}$ ($Mb^{III}$NCS) and $Hb_{III}$ ($Hb_{III}$NCS) in $D_2O$ are $7.2{\pm}0.2$ and $6.6{\pm}0.2$ ps, respectively, which are smaller than that of free NCS. in $D_2O$ (18.3 ps). The $T_1$ values of the ${\nu}_1$ mode of NCO in the $NCO^-$ bound to $Mb^{III}$ ($Mb^{III}$NCO) and $Hb_{III}$ ($Hb_{III}$NCO) in $D_2O$ are $2.4{\pm}0.2$ and $2.6{\pm}0.2$ ps, respectively, which are larger than that of free $NCO^-$ in $D_2O$ ($1.9{\pm}0.2$ ps). The smaller $T_1$ values of the ${\nu}_1$ mode of the heme-bound NCS suggest that intramolecular vibrational relaxation (VR) is the dominant relaxation pathway for the excess vibrational energy. On the other hand, the longer $T_1$ values of the ${\nu}_1$ mode of the heme-bound NCO suggest that intermolecular VR is the dominant relaxation pathway for the excess vibrational energy in the ${\nu}_1$ mode of $NCO^-$ in $D_2O$, and that intramolecular VR becomes more important in the vibrational energy dissipation of the ${\nu}_1$ mode of NCO in $Mb^{III}$NCO and $Hb_{III}$NCO.

Estimation of Vibrational Power Supplied From Vibration Source to Supporting Structure (진동원으로부터 지지구조물에 전달되는 진동 파워의 추정방법)

  • 김재철;이종원
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.306-312
    • /
    • 1998
  • This paper proposes a method for estimating the vibrational power supplied by a machine that generates excitation force to its supporting structure via the coupling points. The basis of the method is that the vibrational power can be calculated using the mechanical impedance and the velocity at the coupling points on the supporting structure. First, a method is described to estimate the mobilities at the coupling points when the machine is not separable from the supporting structure, then the vibrational power is calculated using the estimated mobilities and measured velocities at the coupling points. The mobilities are estimated from the result of impulsive testing of the coupled structure. The method is investigated using an experimental model. The estimated and measured values of the mobilities and the vibrational power are compared. It is shown that the estimated values agree well with the measured values.

  • PDF

Development of Compliant and Dissipative Joints in Coupled Thin Plates for Vibrational Energy Flow Analysis (평판 구조물의 진동 파워흐름해석을 위한 비보존 조인트 개발)

  • Song, Jee-Hun;Hong, Suk-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1082-1090
    • /
    • 2008
  • In this paper, a general solution for the vibrational energy and intensity distribution through a compliant and dissipative joint between plate structures is derived on the basis of energy flow analysis (EFA). The joints are modeled by four sets of springs and dashpots to show their compliancy and dissipation in all four degrees of freedom. First, for the EFA, the power transmission and reflection coefficients for the joint on coupled plate structures connected at arbitrary angles were derived by the wave transmission approach. In numerical applications, EFA is performed using the derived coefficients for coupled plate structures under various joint properties, excitation frequencies, coupling angles, and internal loss factors. Numerical results of the vibrational energy distribution showed that the developed compliant and dissipative joint model successfully predicted the joint characteristics of practical structures vibrating in the medium-to-high frequency ranges. Moreover, the intensity distribution of a compliant and dissipative joint is described.

Research of Power Flow Boundary Element Method for Vibrational Analysis of One and Two Dimensional Structures (1차원 및 2차원 구조물의 진동해석을 위한 파워흐름경계요소법의 연구)

  • 박도현;홍석윤;이호원;서성훈;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.78-84
    • /
    • 2001
  • In this paper, Power Flow Boundary Element Method(PFBEM) has been developed for one and two dimensional noise and vibration problems in the medium to high frequency ranges. Green functions used for PFBEM are the fundamental solutions of energy governing equations. Both direct and indirect methods of PFBEM have been formulated and numerically applied to predict the vibrational energy density and intensity distributions of simple beams, rectangular plates and L-type plates.

  • PDF

Power Flow Analysis for Medium-to-High Frequency Vibration of Shell Structures (셸 구조물의 중고주파 진동 파워흐름해석)

  • 박도현;김일환;홍석윤;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1177-1184
    • /
    • 2002
  • In this paper, power flow analysis method on the various types of thin shell has been developed to solve vibrational Problems in the medium to high frequency ranges. Energy governing equations have been derived both for out-of plane and in-plane waves in thin shell. These results have been numerically applied to predict the vibrational energy density and intensity distributions of cylindrical, spherical and doubly-curved shells.

  • PDF

Collision-Induced Electronic Relaxation of Thiophosgene (S₁)

  • 김택수;Choi, Young S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.745-749
    • /
    • 1996
  • Fluorescence from the electronically excited thiophosgene (Cl2CS) in its first excited singlet state (S1) is efficiently quenched by collision. Rates of the collision-induced electronic relaxation were obtained for various vibrational levels in the S1 state by measuring the fluorescence lifetimes. We found that the relaxation process is strongly energy-dependent; the rate consistently increases by a factor of ~40 with the increase of vibrational energy from 0 to 1450 cm-1. Collision-induced intersystem crossing from the S1 to the first triplet state (T1) is attributed to the major process responsible for the electronic relaxation.

Vibrational Relaxation and Fragmentation in Icosahedral (Ar2+)Ar12 Clusters

  • Ree, Jongbaik;Kim, Yoo Hang;Shin, Hyung Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2774-2780
    • /
    • 2014
  • A dynamics study of relaxation and fragmentation of icosahedral argon cluster with a vibrationally excited $Ar_2^+$ (${\nu}$) is presented. Local translation is shown to be responsible for inducing energy flow from the embedded ion to host atoms and fragmentation of the cluster consisting of various low frequency modes. The total potential energy of $(Ar_2^+)Ar_{12}$ is formulated using a building-up procedure of host-guest and host-host interactions. The time dependence of ion-to-host energy transfer is found to be tri-exponential, with the short-time process of ~100 ps contributing most to the overall relaxation process. Relaxation timescales are weakly dependent on both temperature (50-300 K) and initial vibrational excitation (${\nu}$ = 1-4). Nearly 27% of host atoms in the cluster with $Ar_2^+$ (${\nu}$ = 1) fragment immediately after energy flow, the extent increasing to ~43% for ${\nu}$ = 4. The distribution of fragmentation products of $(Ar_2^+)Ar_{12}{\rightarrow}(Ar_2^+)Ar_n+(12-n)Ar$ are peaked around $(Ar_2^+)Ar_8$. The distribution of dissociation times reveals fragmentation from one hemisphere dominates that from the other. This effect is attributed to the initial fragmentation causing a sequential perturbation of adjacent atoms on the same icosahedral five-atom layer.

Numerov-Cooley Method on a Potential of NO Molecule (산화질소 분자 퍼텐셜에 적용한 Numerov-Cooley 방법)

  • Cho, Seon-Woog
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.125-128
    • /
    • 2007
  • In applying Numerov-Cooley method, Excel tool ‘Solver' is used to match those two wave functions propagated inward and outward, respectively. It is numerically confirmed that the same eigenvalue is obtained by using the average of two energy values of each inward and outward wave functions. This method is applied to a NO molecule potential, and we calculated the variations of the average bond distance and tunneling for a given vibrational energy. It is found that the average bond lengths increase proportionately to the vibrational energy, while the tunneling is not so sensitive to the energy changes. Rather substantial amount of tunnel effect is found for every vibrational state.