• Title/Summary/Keyword: vibration-induced damages

Search Result 33, Processing Time 0.011 seconds

Investigation of blast-induced ground vibration effects on rural buildings

  • Oncu, Mehmet Emin;Yon, Burak;Akkoyun, Ozgur;Taskiran, Taha
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.545-560
    • /
    • 2015
  • In this paper, blast-induced vibration effects on buildings located in rural areas were investigated. Damages to reinforced concrete, adobe and masonry buildings were evaluated in Çatakk$\ddot{o}pr\ddot{u}$ and Susuz villages in Silvan district of Diyarbakir, Turkey. Blasting of stiff rocks to construct highway at vicinity of the villages damaged the buildings seriously. The most important reason of the damages is lack of engineering services and improper constructed buildings according to the current building design codes. Also, it is determined that, inappropriate blast method and soft soil class increased the damages to the buildings. The study focuses on four points: Blast effect on buildings, soil conditions in villages, building damages and evaluation of damage reasons according to the current Turkish Earthquake Code (TEC).

Dynamic Characteristics of a Damaged Plate

  • Lee, Usik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1408-1416
    • /
    • 2001
  • It is very important to well understand the dynamic characteristics of damaged structures to successfully develop or to choose a most appropriate structural damage identification method (SDIM) as the means of non-destructive testing. In this pope., the dynamic equation of motion for damaged plates is derived by introducing a damage distribution function, which may characterize the effective state of structural damages. It is found that structural damages may induce the coupling between modal coordinates. The effects of damages on the vibration characteristics of a plate depending on their locations, sizes, and magnitudes are numerically investigated in a systematic way. The numerical investigations are also given to the effects of damage-induced modal coupling on the changes in vibration characteristics and to the minimum number of natural modes required to predict sufficiently accurate vibration characteristics of damaged plates.

  • PDF

Dynamic Characteristics of the Plate with Structural Damages (구조손상을 갖는 평판의 동적특성)

  • Kim, Nam-In;Lee, U-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.357-362
    • /
    • 2000
  • Though there have been many researches to investigate the relationship between the damage location, damage size and the changes in eigenparameters, there have been few studies on the small-sized damages. Thus, this paper considers the plate with small local damages. The equation of motion for damaged plate is derived in terms of the damage distribution function and then the effects of small damages on the dynamic characteristics of plate are investigated. It is observed that the damage-induced modal coupling and a sufficient number of vibration modes should be considered especially for small damage detections.

  • PDF

Damage Detection in Cable-Stayed Bridges Using Vibration Modes (진동모드를 이용한 사장교의 손상 검색)

  • Kong, Min-Sik;Ka, Hoon;Son, Seok-Ho;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.113-123
    • /
    • 2006
  • As Cable-stayed bridges were constructed to the long span, they have become bigger and had weaknesses to vibration induced by earthquake, wind and vehicle loads. Structural damages induced by these loads affect the characteristic of vibration modes of structure. Damage detection of cable-stayed bridges by using existing safety diagnosis is difficult to detect the characteristic change of overall structural action. Also it requires very much time and cost. So in this study, the investigation of characteristic change of structural action and the detection of structural damages is analyzed by using characteristic properties of vibration mode before and after structural damage.

Experimental Evaluation for Vibration Reduction Capability of Vibration-Controlled Concrete Panels (진동제어 콘크리트 패널의 제진성능 평각에 관한 실험적 연구)

  • 최우성;박용구;조성호;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.351-356
    • /
    • 1997
  • With the aid of advanced structural engineering, the construction of infrastructures has been recently accelerating to keep up with rapid economic growth. Construction activities and operation of transportation facilities cause civil petitions associated with vibration-induced damages or nuisances. As part of the decrease of vibration induced damage, the objective of this study is to develop vibration-controlled concrete with vibration-reduced materials, which can be recycled from obsolete materials, such as aged tires, plastics and etc. Appropriate mix proportion has been used for making 10 reinforced concrete panels with vibration-reduced materials, which have been tested to investigate on vibration reduction capability, based on the time and frequency domain analysis, and vibration velocity level analysis. Vibration-reduced mixtures are latex, styrofoam, rubber powder and plastic resin, which have been determined to by reduce vibration.

  • PDF

Prediction of Blasting-induced Vibration at Sintanjin Area, Daejeonusing Borehole Test Blasting (시추공 시험발파를 이용한 대전 신탄진 지역의 발파진동 예측)

  • Lee, Chung-Won;Park, Sung-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.55-62
    • /
    • 2018
  • Problems on vibration due to blasting for infrastructure development are getting important because of a civil appeal. Blasting-induced vibration is representative construction pollution, hence, it is possible that a number of environmental damages occur. In this study, borehole test blasting was conducted at Sintanjin area, Daejeon and square root equation with 95% confidence level was proposed for prediction of blasting-induced vibration. The vibration value predicted from this equation was more conservatively evaluated than the values predicted from U.S. Department of Interior, Bureau of Mines (USBM) and Nippon Oil & Fats Co., Ltd. (NOF) equations. Therefore, the proposed equation in this study seems to contribute for safety blast design. However, for optimal blast design, inducing equation for prediction of blasting-induced vibration through the identical test blasting with field construction such as rock slope blasting would be required.

Experimental Study for the Development of Vibration-Controlled Concrete (I) (진동제어 콘크리트 개발에 관한 실험적 연구(I))

  • 정영수;이대형;최우성
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.123-133
    • /
    • 1996
  • Recently, the construction of infrastructures has been booming and accelerating to keep up with rapid economic growth. Construction activities and operation of transportation facilities cause unfavorable effects such as civil petitions associated with vibration-induced damages or nuisances. Accordingly, the objective of this study is to develop vibration-controlled concrete using various vibration-controlled mixtures, and also to recycle obsolete materials in part. As the first step to achieve this research, preliminary mix designs have been carried out to obtain an appropriate mix proportion above 200kg/$\textrm{cm}^2$ in uniaxial compressive strength. Test specimen based on the mix proportion selected have been actuated by the impact hammer to investigate their dynamic characteristics. Vibration-controlled mixtures are foam, latex, rubber powder and plastic resin, which have been determined to reduce a vibration by and large. KS F2437 and travel time method have been used to figure out 1st natural frequency and dynamic elastic moduli. Damping ratios have been computed by adopting the polynomial curvefitting method and the geometric analysis method on the frequency response spectrum curve. of which results have been compared and analyzed hereon.

Experimental Study on the Development of Vibration Controlled Concrete (진동제어 콘크리트 개발에 관한 실험적 연구)

  • 최우성;이대형;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.180-185
    • /
    • 1996
  • Construction activities and operation of transportation facilities have caused unfavorable effects such as civil petitions associated with vibration-induced damages or nuisances. The objedtive of this research is to develop vibration-controlled concrete containing foams, latex, rubber powders, plastic resins and etc as a concrete mixture. As the first step to achieve this research, preliminary mix designs have been carried out to find out an appropriate mix proportion above 200kg/㎠ in uniaxial compressive strength, and investigate their dynamic mechanical characteristics such as dynamic elastic moduli, material damping ratio, Poisson's ratio, resonant frequency and etc.

  • PDF

New methodology to prevent blasting damages for shallow tunnel

  • Ozacar, Vehbi
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1227-1236
    • /
    • 2018
  • From all of the environmental problems, blast-induced vibrations often cause concern to surrounding residents. It is often claimed that damage to building superstructures is due to blasting, and sometimes the building owner files a lawsuit against the company that perform blasting operations. The blast-vibration problem has been thoroughly investigated in the past and continues to be the subject of ongoing research. In this study, a tunnel construction has been performed by a construction company, according to their contract they must have used drilling & blasting method for excavation in tunnel inlet and outlet portal. The population is very condensed with almost tunnel below in the vicinity houses of one or two floors, typically built with stone masonry and concrete. This situation forces the company to take extreme precautions when they are designing blasts so that the blast effects, which are mainly vibration and aerial waves, do not disturb their surrounding neighbors. For this purpose, the vibration measurement and analysis have been carried out and a new methodology in minimizing the blast induced ground vibrations at the target location, was also applied. Peak particle velocity and dominant frequencies were taken into consideration in analyzing the blast-induced ground vibration. The methodology aims to employ the most suitable time delays among blast-hole groupings to render destructive interference of surface waves at the target location.

Application of Lamb Waves and Probabilistic Neural Networks for Health Monitoring of Joint Steel Structures (강 구조물 접합부의 건전성 감시를 위한 램 웨이브와 확률 신경망의 적용)

  • Park, Seung-Hee;Lee, Jong-Jae;Yun, Chung-Bang;Roh, Yongrae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.53-62
    • /
    • 2005
  • This study presents the NDE (non-destructive evaluation) technique for detecting the loosened bolts on joint steel structures on the basis of TOF (time of flight) and amplitudes of Lamb waves. Probabilistic neural network (PNN) technique which is an effective tool for pattern classification problem was applied to the damage estimation using PZT induced Lamb waves. Two kinds of damages were introduced by dominant damages (DD) which mean loosened bolts within the Lamb waves beam width and minor damages (MD) which mean loosened bolts out of the Lamb waves beam width. They were investigated for the establishment of the optimal decision boundaries which divide each damage class's region including the intact class. In this study, the applicability of the probabilistic neural networks was identified through the test results for the damage cases within and out of wave beam path. It has been found that the present methods are very efficient and reasonable in predicting the loosened bolts on the joint steel structures probabilistically.