• 제목/요약/키워드: vibration velocity

검색결과 1,398건 처리시간 0.026초

플로워 진동 저감을 위한 제진재 해석 프로세스 연구 (Study on the Analysis Process of the Damping Material for Reduced Floor Vibration)

  • 김기창;황미경;서성훈;최재민;김찬묵;김진택
    • 한국소음진동공학회논문집
    • /
    • 제21권4호
    • /
    • pp.333-338
    • /
    • 2011
  • This paper describes the design process of floor damping material optimization to reduce structure borne noise. This process uses finite element analysis(FEA) along with experimental techniques to complement each other. The objective of this approach was to develop an optimized damping material application layout and thickness at the initial design stage. The first step is to find the sensitivity areas of vehicle body without damping material applied using FEA. In order to determine the high vibration areas of the floor panel, the velocity was measured using a scanning laser vibrometer from 20 Hz to 300 Hz. To excite the floor panel vibration, shaker was placed at the front suspension attachment point. The second step is the optimization process to determine the light weight solution of damping material. The design guideline of damping material was suggested that the lightweight solution was verified using test result of road noise. Design engineer could efficiently decide the design variable of damping material using parameter analysis results in early design stage.

유체부가수질량 절점분포 방법에 의한 전선진동해석 (Global Ship Vibration Analysis by Using Distributed Fluid Added Mass at Grid Points)

  • 김영복;최문길
    • 대한조선학회논문집
    • /
    • 제48권4호
    • /
    • pp.368-374
    • /
    • 2011
  • Recently, the ship vibration analysis technique has been well set up by using FEM. The methods considering the hydrodynamic added mass and damping of the fluid surrounding a floating ship have been well developed, so that they can be calculated by using the commercial package FEM programs such as MSC/NASTRAN, ADINA and ANSYS. Especially, MSC/NASTRAN has the functions to consider the fluid in tanks(MFLUID) and to solve the Fluid-Structure Interaction(FSI) problem(DMAP). In this study, the global ship vibration with considering the added mass distributed at the grid points on the wetted shell surface is introduced to. In the new method, the velocity potentials of the fluid surrounding a floating ship are calculated by solving the Lapalce equation using the Boundary Element Method(BEM), and the point mass is obtained by integrating the potentials at the points. Then, the global vibration analyses of the ship structure with distributed added mass on the wetted surface are carried out for an oil/chemical tanker. During the future sea trial, the results will be confirmed by measurement.

밸런스 샤프트 적용에 따른 4기통 디젤 엔진 블록의 방사소음 특성 개선 해석 (The Analysis of NVH Characteristics of 4-Cylinerder Diesel Engine Block by Adapting Balancing Shaft)

  • 최천;서명원;김영진
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.129-137
    • /
    • 2000
  • The powertrain is an important factor for the interior and exterior noise behavior of the vehicle Thus, the noise vibration and harshness(NVH) behavior of an engine is becoming a major target of the powertrain development. This paper describes the analyses with the aim to reduce the vibration and noise of an advanced inline 4-cylinder diesel engine block by use of CAE methods. The characteristics of an engine block as a main excitation source of car interior noise is studied. Particularly, The effect of balance shaft to reduce the 2nd order engine excitation force is calculated by forced vibration and radiated noise analysis. The engine exitation forces are obtained under real operating conditions. It is shown that the reduction of vibration and noise level by adapting blancing shaft is well predicted and rediated noise is directly related to the surface velocity of engine block.

  • PDF

Experimental and numerical simulation investigation on vortex-induced vibration test system based on bare fiber Bragg grating sensor technology for vertical riser

  • Wang, Chunxiao;Wang, Yu;Liu, Yu;Li, Peng;Zhang, Xiantang;Wang, Fei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.223-235
    • /
    • 2021
  • The Vortex-Induced Vibration (VIV) test system on deepwater riser based on Bare Fiber Bragg Grating (BFBG) sensor technology was designed. Meanwhile, a riser VIV response numerical model was established based on the work-energy principle. The results show that the first-order vibration frequency dominates the vibration of the riser, and as the velocity increases, the dominant frequency of the riser gradually increases under the effect of different top tensions. At the same velocity, as the top tension increases step by step, the dominant frequency and fatigue damage at the same position along the axial length of the riser both gradually decreases. The model test and numerical simulation show a relatively consistent change, maintaining a high degree of agreement. The process control system based on BFBG of model test has excellent performance, and FBG sensors have great advantages in VIV test of a vertical riser in water.

Nano-graphene oxide damping behavior in polycarbonate coated on GFRP

  • Mohammad, Afzali;Yasser, Rostamiyan;Pooya, Esmaeili
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.823-829
    • /
    • 2022
  • This study considered the experimental parameters (Nano-graphene oxide reinforced polycarbonate, GFRP) under low-velocity impact load and vibration analysis. The effect of nano-graphene oxide (NGO) on a polycarbonate-based composite was studied. Two test procedures were adopted to obtain experimental results, vibration analysis. The mechanical tests were performed on damaged and non-damaged specimens to determine the damaging effect on the composite specimens. After the test was carried out, the effect of NGO was measured and damping factors were ascertained experimentally. 0. 2 wt% NGO was determined as the optimum amount that best affected the Vibration Analysis. The experiments revealed that the composite's damping properties were increased by adding the nanoparticles to 0.25 wt% and decreased slightly for the specimens with the highest nanoparticles content. Cyclic sinus loading was applied at a frequency of 3.5 Hz. This paper study the frequency effect of 3.5khz frequency damage on mechanical results. Found that high frequency will worthlessly affect the fatigue life in NGO/polycarbonate composite. In 3.5 Hz frequency, it was chosen to decrease the heat by frequency. Transmission electron microscopy (TEM) micrographs were used to investigate the distribution of NGO on the polycarbonate matrix and revealed a homogeneous mixture of nano-composites and strong bonding between NGO and the polycarbonate which increased the damping properties and decreased vibration. Finally, experimental modal analysis was conducted after the high-velocity impact damage process to investigate the defect on the NGO polycarbonate composites.

Fresh 콘크리트의 초기 강도 증가를 고려한 진동규준치 제안 (Suggestion of Vibration Criteria for Fresh Concrete Considering Early Strength Increase)

  • 박선준;박연수;강성후;김홍기;김응록
    • 한국소음진동공학회논문집
    • /
    • 제12권6호
    • /
    • pp.453-460
    • /
    • 2002
  • In this paper, vibration criteria for fresh concrete are suggested considering relationship of strength and ages of concrete. Vibration criteria of fresh concrete subjected to construction vibration are not to be certain in abroad countries without question within a country. Before 12 hours cured, vibration criterion is suggested 0.25 cm/s. Used 4.0 cm/s by vibration criterion after 28 days. And the interval extent used relation with strength and ages of concrete. Vibration criteria proposed in this paper are thought may satisfy properties of fresh concrete as well as generally used those in domestic. Also, the actual ground vibrations due to pile driving have been measured, and data are analyze using the nitration equation applying to reliability index.

진동제어 콘크리트 패널의 제진성능 평각에 관한 실험적 연구 (Experimental Evaluation for Vibration Reduction Capability of Vibration-Controlled Concrete Panels)

  • 최우성;박용구;조성호;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.351-356
    • /
    • 1997
  • With the aid of advanced structural engineering, the construction of infrastructures has been recently accelerating to keep up with rapid economic growth. Construction activities and operation of transportation facilities cause civil petitions associated with vibration-induced damages or nuisances. As part of the decrease of vibration induced damage, the objective of this study is to develop vibration-controlled concrete with vibration-reduced materials, which can be recycled from obsolete materials, such as aged tires, plastics and etc. Appropriate mix proportion has been used for making 10 reinforced concrete panels with vibration-reduced materials, which have been tested to investigate on vibration reduction capability, based on the time and frequency domain analysis, and vibration velocity level analysis. Vibration-reduced mixtures are latex, styrofoam, rubber powder and plastic resin, which have been determined to by reduce vibration.

  • PDF

국소 벽면 진동에 의한 난류경계층 유동 변화 (Modification of Turbulent Boundary Layer Flow by Local Wall Vibration)

  • 김철규;전우평;박진일;김동주;최해천
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1255-1263
    • /
    • 2000
  • In this study, the modification of turbulent boundary layer flow by local wall vibration is investigated. The wall is locally vibrated using a wall deformation actuator, which moves up and down at the frequencies of 100Hz and 50Hz. Simultaneous measurements of the streamwise velocities in the spanwise direction are performed at several wall-normal and streamwise locations using an in-house multi-channel hot wire anemometer and a spanwise hot-wire-probe rake. The mean velocity is reduced in most places due to the wall vibration and its reduced amount becomes small as flow goes downstream. Interestingly, the mean velocity is found to increase very near the wall and near the actuator. This is due to the motion induced by the streamwise vortices which are generated by the downward motion of the actuator. In case of the streamwise velocity fluctuations, their magnitude increases as compared to the unperturbed turbulent boundary layer, and the increased amount becomes small as the flow moves downstream. The modified flow field at the forcing frequency of 50Hz is not much different from that of 100Hz, except the reduced amount of modification.

모드형상분석을 위한 연속 스캐닝 레이저 도플러 진동측정기 (A Continuous Scanning Laser Doppler Vibrometer for Mode Shape Analysis)

  • 박기환;최지은;라종필;왕세명;경용수;김경석
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.734-741
    • /
    • 2003
  • This paper addresses the vibration mode shape Measurement technique utilizing a Continuous Scanning Laser Doppler Vibrometer (CSLDV). The continuous scanning capability is added to the conventional discrete Laser Doppler Vibrometer by reflecting the laser beams on the surface of the object using two oscillating mirrors. The bow scanning resulted from the proposed scanning method is eliminated by feedback control. The velocity output signal from the CSLDV is modulated to give the spatial velocity distribution in terms of coefficients which are obtained from the Fast Fourier Transformation of the time dependent velocity signal. Using the Chebyshev series from, the analysis of the vibration mode shape techniques for straight line scanning and 2 dimensional scanning are presented and discussed. The performance of the proposed SLDV is presented using the experimental results of the vibration mode shape of a cantilever and plate

배관계 진동특성에 미치는 탄성 중간지지대의 영향 (Effect of an elastic intermediate support on the vibration characteristics of fluid conveying pipes)

  • 전오성;정진태;이용봉;황철호
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1799-1806
    • /
    • 1991
  • 본 연구에서는 양단이 지지된 단순 모델을 사용하여, 양단 사이의 한 위치에 탄성지지를 할 때 고유진동수 변화를 검토하고 고유진동수를 높이는 방안을 제시하고 자 한다. 또한 분산변수계(distributed parameter system)을 사용하는 경우, 일반적 으로 홀수차항이 있는 미분방정식에서 그 해를 다항식, 고유벡터나 삼각함수의 무한개 의 합 등으로 표시하고 있으나 본 연구에서는 미분 방정식으로 표시하는 방법을 사용 하여 완전해(closed form solution)로 표시하여 구함으로서 오차를 제거하고 계산을 간결하게 하였다.