• Title/Summary/Keyword: vibration theory

Search Result 1,805, Processing Time 0.024 seconds

Physical insight into Timoshenko beam theory and its modification with extension

  • Senjanovic, Ivo;Vladimir, Nikola
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.519-545
    • /
    • 2013
  • An outline of the Timoshenko beam theory is presented. Two differential equations of motion in terms of deflection and rotation are comprised into single equation with deflection and analytical solutions of natural vibrations for different boundary conditions are given. Double frequency phenomenon for simply supported beam is investigated. The Timoshenko beam theory is modified by decomposition of total deflection into pure bending deflection and shear deflection, and total rotation into bending rotation and axial shear angle. The governing equations are condensed into two independent equations of motion, one for flexural and another for axial shear vibrations. Flexural vibrations of a simply supported, clamped and free beam are analysed by both theories and the same natural frequencies are obtained. That fact is proved in an analytical way. Axial shear vibrations are analogous to stretching vibrations on an axial elastic support, resulting in an additional response spectrum, as a novelty. Relationship between parameters in beam response functions of all type of vibrations is analysed.

A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations

  • Saidi, Hayat;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.289-307
    • /
    • 2016
  • A simple hyperbolic shear deformation theory taking into account transverse shear deformation effects is proposed for the free flexural vibration analysis of thick functionally graded plates resting on elastic foundations. By considering further supposition, the present formulation introduces only four unknowns and its governing equations are therefore reduced. Hamilton's principle is employed to obtain equations of motion and Navier-type analytical solutions for simply-supported plates are compared with the available solutions in literature to check the accuracy of the proposed theory. Numerical results are computed to examine the effects of the power-law index and side-to-thickness ratio on the natural frequencies.

Experimental Investigation on the Equivalent Ring Theory of the Beat (맥놀이의 등가 링 이론에 관한 실험적 검토)

  • Kim, S.H.;Cui, C.X.;Park, H.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1218-1223
    • /
    • 2007
  • In this study, we experimentally investigate the equivalent ring theory for a slightly asymmetric ring. The slightly asymmetric ring has mode pair and frequency pair due to the small asymmetry and this mode pair generates beat in vibration and sound. In this paper, a slightly asymmetric ring is modeled as the equivalent ring, i.e., the assemblage of a symmetric ring and imperfect point masses. The equivalent ring has the same mode pair condition as that of the original asymmetric ring. Effect of the additional mass attachment is investigated by the equivalent ring theory and the result is compared with those of the measurement and the finite element analysis. It is confirmed that the original ring and the equivalent ring show the same change in frequency and mode under the various additional imperfection mass conditions. The equivalent ring theory explains how the asymmetric elements influence the mode characteristics and provides useful information to tune the beat property.

  • PDF

Timoshenko theory effect on the vibration of axially functionally graded cantilever beams carrying concentrated masses

  • Rossit, Carlos A.;Bambill, Diana V.;Gilardi, Gonzalo J.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.703-711
    • /
    • 2018
  • In this paper is studied the effect of considering the theory of Timoshenko in the vibration of AFG beams that support ground masses. As it is known, Timoshenko theory takes into account the shear deformation and the rotational inertia, provides more accurate results in the general study of beams and is mandatory in the case of high frequencies or non-slender beams. The Rayleigh-Ritz Method is employed to obtain approximated solutions of the problem. The accuracy of the procedure is verified through results available in the literature that can be represented by the model under study. The incidence of the Timoshenko theory is analyzed for different cases of beam slenderness, variation of its cross section and compositions of its constituent material, as well as different amounts and positions of the attached masses.

A new plate model for vibration response of advanced composite plates in thermal environment

  • Taleb, Ouahiba;Houari, Mohammed Sid Ahmed;Bessaim, Aicha;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.369-383
    • /
    • 2018
  • In this work, a novel hyperbolic shear deformation theory is developed for free vibration analysis of the simply supported functionally graded plates in thermal environment and the FGM having temperature dependent material properties. This theory has only four unknowns, which is even less than the other shear deformation theories. The theory presented is variationally consistent, without the shear correction factor. The present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical model are performed to demonstrate the efficacy of the model.

Vibration Control of Multi-Degree-of-Freedem Structure by Nonlinear TEX>$H_\infty$ Control

  • Kubota, Kenta;Sampei, Mitsuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.354-358
    • /
    • 1994
  • This study is concerned with H$_{\infty}$ control theory of nonlinear systems. Recently H$_{\infty}$ control theory has been developed to nonlinear systems, and especially nonlinear H$_{\infty}$ control theory based on the Hamilton-Jacobi inequality has been proposed. This corresponds to linear H$_{\infty}$ control theory based on the Riccati equation. In this paper, we apply it to a semi-active dynamic vibration absorber for multi-degree-of-freedom structure, and we design its state feedback controller via the Riccati equation. In the simulation, we show that it is effective for a vibration control.rol.

  • PDF

Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams

  • Ebrahimi, Farzad;Shafiei, Navvab
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.837-857
    • /
    • 2016
  • In the present study, for first time the size dependent vibration behavior of a rotating functionally graded (FG) Timoshenko nanobeam based on Eringen's nonlocal theory is investigated. It is assumed that the physical and mechanical properties of the FG nanobeam are varying along the thickness based on a power law equation. The governing equations are determined using Hamilton's principle and the generalized differential quadrature method (GDQM) is used to obtain the results for cantilever boundary conditions. The accuracy and validity of the results are shown through several numerical examples. In order to display the influence of size effect on first three natural frequencies due to change of some important nanobeam parameters such as material length scale, angular velocity and gradient index of FG material, several diagrams and tables are presented. The results of this article can be used in designing and optimizing elastic and rotary type nano-electro-mechanical systems (NEMS) like nano-motors and nano-robots including rotating parts.

Stability and vibration analysis of composite plates using spline finite strips with higher-order shear deformation

  • Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • In the present study, a spline finite strip with higher-order shear deformation is formulated for the stability and free vibration analysis of composite plates. The analysis is conducted based on Reddy's third-order shear deformation theory, Touratier's "Sine" model, Afaq's exponential model and Cho's higher-order zigzag laminate theory. Consequently, the shear correction coefficients are not required in the analysis, and an improved accuracy for thick laminates is achieved. The numerical results, based on different shear deformation theories, are presented in comparison with the three-dimensional elasticity solutions. The effects of length-to-thickness ratio, fibre orientation, and boundary conditions on the critical buckling loads and natural frequencies are investigated through numerical examples.

Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory

  • Safa, Abdelkader;Hadji, Lazreg;Bourada, Mohamed;Zouatnia, Nafissa
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.329-336
    • /
    • 2019
  • An efficient shear deformation beam theory is developed for thermo-elastic vibration of FGM beams. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the on the surfaces of the beam without using shear correction factors. The material properties of the FGM beam are assumed to be temperature dependent, and change gradually in the thickness direction. Three cases of temperature distribution in the form of uniformity, linearity, and nonlinearity are considered through the beam thickness. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. The closed-form solutions of functionally graded beams are obtained using Navier solution. Numerical results are presented to investigate the effects of temperature distributions, material parameters, thermal moments and slenderness ratios on the natural frequencies. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory

  • Yahea, Hussein T.;Majeed, Widad I.
    • Composite Materials and Engineering
    • /
    • v.3 no.3
    • /
    • pp.179-199
    • /
    • 2021
  • A simple solution for free vibration of cross-ply and angle-ply laminated composite plates in a thermal environment is investigated using a basic trigonometric shear deformation theory. By application of trigonometric four variable plate theory, the transverse displacement is subdivided into bending and shear components, the present theory's number of unknowns and governing equations is reduced, making it easier to use. Hamilton's Principle is extended to derive the equations of motion of the plates using Navier's double trigonometric series, a closed-form solution is obtained; the primary conclusion is that simple solution is obtained with good results accuracy when compared with previously published results, and the natural frequency will differ depending on, environment temperature, thickness ratio, and lamination angle, as well as the aspect ratio of the plate.