• Title/Summary/Keyword: vibration test rig

Search Result 86, Processing Time 0.024 seconds

Compatibility test of a non-instrumented irradiation test capsule for the HANARO test reactor (환형소결체 하나로 조사시험용 무계장 캡슐의 연구로 설치 적합성시험)

  • Lee, Kang-Hee;Kim, Dae-Ho;Chun, Tae-Hyun;Kim, Hyung-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.226-229
    • /
    • 2008
  • To investigate an in-pile behavior of the newly developed DUO fuel pellet, the irradiation test will be carried out in the domestic test reactor. Irradiation test capsule for the HANARO reactor, which is a specially designed equipment used for material, irradiation and creep test, must satisfy the operational requirement on the hydraulic characteristics and structural integrity. In this study, a pressure drop, a flow-induced vibration and a short-term endurance test for the newly developed non-instrumented test capsule were carried out using FIVPET as a out-pile evaluation test. The test results show that the new test rig satisfy the HANARO operational requirement with sufficient margin.

  • PDF

A Study on the Factors Influencing the Abnormal Vibration of the Lateral Direction in Railway Vehicles Caused by Hysteresis of Critical Speed (임계속도 이력현상에 의한 철도차량 횡방향 이상 진동에 영향을 미치는 인자들에 관한 연구)

  • 정우진;심재경;조동현
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.265-275
    • /
    • 2001
  • This research has been performed to reveal the hysteresis phenomena of the hunting motion in a railway passenger cars. It is found that there are some factors and its operation region to make the nonlinear critical speed reacts to them more sensitively than the linear critical speed. The simulation results show that a self steering bogie system can be a substitute proposal to improve curving Performance together with the reduction of hysteresis of critical speed. Full scale roller rig test is carried out for the validation of the numerical results. Finally, it is certified that wear of wheel profile and stiffness discontinuities of wheelset suspension caused by deterioration have to be considered in the analysis to predict the hysteresis of critical speed precisely.

  • PDF

An Experimental Study of Squeal Noise Characteristics for Railway Using a Scale Model Test Rig (축소 모델 실험장치를 이용한 철도 스킬소음의 특성에 대한 실험적 연구)

  • Kim, Jiyong;Hwang, Donghyeon;Lee, Junheon;Kim, Kwanju;Kim, Jaechul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.352-360
    • /
    • 2015
  • Squeal noise is a harsh, high-pitched sound that occurs when railways are running at sharp curve tracks. The cause of squeal noise is known to be the transient lateral traction force between wheel and rail. Field measurements are too difficult to control the parameters. Thus, the scaled test rig should have been made in order to investigate the generating mechanism of squeal noise. The unique feature of our test rig, HSTR(Hongik Squeal Testing Rig), is that DOFs of its wheelset are as close to as those of the real railway. The attack angle and running speed of the rail roller are controlled in real time for simulating a transient characteristic of driving curve. The environment conditions, such as given axle load, running speed, and wheel's yaw angle have been identified for generating squeal noise and the squeal noise itself has been measured. The relation between wheel creepage and creep force in lateral direction and the criteria for squeal noise have been investigated, which results has been verified by finite element method.

Development of Coolant Flow Simulation System for Nuclear Fuel Test Rigs (핵연료조사리그 냉각수 유동 모의장치 개발)

  • Hong, Jintae;Joung, Chang-Young;Heo, Sung-Ho;Kim, Ka-Hye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.117-123
    • /
    • 2015
  • To remove heat generated during a burn-up test of nuclear fuels, the heat generation rate of nuclear fuels should be calculated accurately, and a coolant should be circulated in the test loop at an adequate flow rate. HANARO is an open pool-type reactor with an independent test loop for the burn-up test of nuclear fuels. A test rig is installed in the test loop, and a coolant is circulated through the test loop to maintain the temperature of the nuclear fuel rods within a desired temperature during an irradiation test. The components and sensors in the test rig can be broken or malfunction owing to the flow-induced vibration. In this study, a coolant flow simulation system was developed to verify and confirm the soundness of components and sensors assembled in the test rig with a high flow rate of the coolant.

Experimental Verification of Compressor Blade Aeromechanics (압축기 블레이드 Aeromechanics의 시험적 검증)

  • Choi, Yun Hyuk;Park, Hee Yong;Kim, Jee Soo;Shin, Dong Ick;Choi, Jae Ho;Kim, Yeong Ryeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.240-244
    • /
    • 2017
  • Experimental verification in the rig test stage for component development is a vital link between the aeromechanical design and structural integrity validation process. Based on this premise, Non-Intrusive Stress Measuring System was adopted on the axial compressor test rig to measure the static and dynamic tip deflection of all blades by using tip-timing sensors. Through analyzing vibration characteristics, we evaluated the vibratory stresses seen on the blades fatigue critical location; detected synchronous resonances which are the source of High Cycle Fatigue (HCF) in blades; presented non-synchronous vibration response by aerodynamic excitation and individual blade mis-tuning patterns.

  • PDF

Experimental Evaluation of Direct Measurement for Excitation Forces Acting on the Hard-points of Suspension System to Predict Road-noise Performance (로드노이즈 성능 예측을 위한 현가장치 하드포인트의 가진력 직접 측정법에 대한 실험적 평가)

  • Kang, Yeon June;Kim, Heesoo;Song, David P.;Ih, Kang-Duck;Kim, HyoungGun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.184-190
    • /
    • 2015
  • NVH engineering has become a hot issue due to radical technology changes and development in automotive industry since customers' expectations and needs for their vehicle is taken to a higher level. However, the source identification and quantification of the road noise within a vehicle is still not at the level where it needs to be to meet their expectations due to its' complex transfer path and difficulties in path optimization. The primary focus of this research is on direct force obtaining method at suspension hard points using suspension test rig. Directly obtained forces at suspension to body mounting points are critical and crucial for determining the effects of design changes of the suspension has on road noise performance. Direct force obtaining method has its limitation in sensor installation within an actual vehicle therefore, many has been indirectly calculating forces using full matrix inversion method or dynamic stiffness method. In this study, to circumvent this limitation, a suspension rig is used. Then, the suspension rig is verified through a comparative analysis of its dynamic behavior between the actual vehicle by cleat test on chassis dynamometer.

Running Stability Test of Developed Bogie for High Speed Train on the Roller Rig (주행 시험대에서의 고속전철 개발대차의 주행안정성 평가)

  • Kim, Jin-Tae;Oh, Hyeong-Sik;Jung, Hoon
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.839-844
    • /
    • 2002
  • This research aims to test the running stability of the developed bogie with maximum operating speed of 350km/h, which of Korea TGV was 300km/h. The running stability test has been executed in status of a dummy car with one developed bogie and one dummy bogie on the roller rig to embody similar operation condition. The test has been done in the two rail conditions, i.e. excitation and non-excitation, respectively. Running speed has been increased by the roller step by step. In consequence, the developed bogie was proven to be able to run upto 400 Km/h without any unstable point in the non-excitation. Vibration characteristics of carbody also was within the value specified on the UIC 515.

  • PDF

Identification of Dynamic Characteristics of Squeeze Film Damper Using Active Magnetic Bearing System as an Exciter (자기 베어링 시스템을 가진기로 이용한 스퀴즈 필름 댐퍼의 동특성 계수 규명)

  • 김근주;이종원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.508-516
    • /
    • 2003
  • The dynamic characteristics of an ell-lubricated, short squeeze film damper (SFD) with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove, and identified experimentally using an Active Magnetic Bearing (AMB) system as an exciter. In order to get the theoretical solution, the fluid film forces of the grooved SFD are analytically derived so that the dynamic coefficients of the SFD can be expressed in terms of its design parameters. For the experimental validation of the analysis, a test rig using an AMB as an exciter is proposed. As an exciter. the AMB represents a mechatronic device to levitate and position the test Journal without any mechanical contact, to generate relative motions of the Journal inside the tested SFD and to measure the generated displacements during experiments with fairly high accuracy. Using this test rig, experiments are extensively conducted with various values of clearance, which Is one of the most important design parameters. in order to investigate its effect on the dynamic characteristics and the performance of the SFD. Damping and Inertia coefficients of the SFD that are experimentally Identified are compared with the analytical results to demonstrate the effectiveness of the applied analysis. It Is also shown that the AMB is an ideal device for tests of SFDs.