• 제목/요약/키워드: vibration response signals

검색결과 111건 처리시간 0.022초

State detection of explosive welding structure by dual-tree complex wavelet transform based permutation entropy

  • Si, Yue;Zhang, ZhouSuo;Cheng, Wei;Yuan, FeiChen
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.569-583
    • /
    • 2015
  • Recent years, explosive welding structures have been widely used in many engineering fields. The bonding state detection of explosive welding structures is significant to prevent unscheduled failures and even catastrophic accidents. However, this task still faces challenges due to the complexity of the bonding interface. In this paper, a new method called dual-tree complex wavelet transform based permutation entropy (DTCWT-PE) is proposed to detect bonding state of such structures. Benefiting from the complex analytical wavelet function, the dual-tree complex wavelet transform (DTCWT) has better shift invariance and reduced spectral aliasing compared with the traditional wavelet transform. All those characters are good for characterizing the vibration response signals. Furthermore, as a statistical measure, permutation entropy (PE) quantifies the complexity of non-stationary signals through phase space reconstruction, and thus it can be used as a viable tool to detect the change of bonding state. In order to more accurate identification and detection of bonding state, PE values derived from DTCWT coefficients are proposed to extract the state information from the vibration response signal of explosive welding structure, and then the extracted PE values serve as input vectors of support vector machine (SVM) to identify the bonding state of the structure. The experiments on bonding state detection of explosive welding pipes are presented to illustrate the feasibility and effectiveness of the proposed method.

응답측정을 통한 구조물의 진동과 관련된 구조적 소음원 규명 (A Technique to Identify the Structure Borne Noise Sources Related to Structure Vibration Using Response Signals)

  • 이재갑;여승동;방정환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1994년도 추계학술대회논문집; 한국종합전시장, 18 Nov. 1994
    • /
    • pp.160-164
    • /
    • 1994
  • 본 논문에서는 구조물의 진동으로 야기되는 소음원을 규명하기 위해 구조물 동작중의 응답신호를 측정한다. 먼저 응답 신호벡터에서 스펙트럼행렬을 구성하여 특이치 분리법을 수행한다. 특이치의 정보로 구조물의 응답에 영향을 미치는, 서로 독립적으로 작용하는 주 가진원을 파악한다. 간단한 구조물에 대해, 본 논문에서 적용된 기법의 유용성 및 물리적 성질을 검토한 후, 자동차 파워트레인이 구조 진동이 실내 소음에 미치는 구조적 소음을 실험을 통해 규명한다.

  • PDF

모드분해기법을 이용한 현수교의 변위응답추정 (Estimation of displacement responses of a suspension bridge by using mode decomposition technique)

  • 장성진;김남식;김호경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.320-325
    • /
    • 2009
  • In this study, a method to estimate the suspension bridge deflection is developed using mode decomposition technique. In order to examine the suspension bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. However, it is recognized that any measurement of movement for suspension bridges may be difficult for the absence of proper methods to measure the displacement response on site. This study aims at suggesting a method to estimate the displacement response from the measured strain signals in an indirect way to predict the displacement response, not a direct way to measure the displacement response. Additionally, by applying the FBG sensors with multi-point measurements not influenced by electric noise, it can be expected that the technique would be applicable to infrastructures.

  • PDF

충격 햄머 실험에서 다자유도 주파수 응답 스펙트럼의 개선 (An Enhancement of Multi-Dof Frequency Response Spectrum from Impact Hammer Testing)

  • Ahn, Se-Jin;Jeong, Weui-Bong
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.363.2-363
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function(FRF) of the structure. However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. (omitted)

  • PDF

둔턱 진행 차량의 승객수와 속도에 따른 파워스펙트럼 특성분석 (Characteristics of Power Spectrum according to Variation of Passenger Number and Vehicle Speed)

  • 이혁;김종도;윤문철
    • 한국기계가공학회지
    • /
    • 제21권1호
    • /
    • pp.41-48
    • /
    • 2022
  • Vehicle vibration was introduced in the time and frequency domains using fast Fourier transform (FFT) analysis. In particular, a vibration mode analysis and characteristics of the frequency response function (FRF) in a sport utility vehicle (SUV) passing over a bump barrier at different speeds was performed systematically. The response behavior of the theoretical acceleration was obtained using a numerical method applied to the forced vibration model. The amplitude and frequency of the external force on the vehicle cause various power spectra with individual intrinsic system frequencies. In this regard, several modes of power spectra were acquired from the spectra and are discussed in this paper. The proposed technique can be used for monitoring the acceleration in a vehicle passing over a bump barrier. To acquire acceleration signals, various experimental runs were performed using the SUV. These acceleration signals were then used to acquire the FRF and to conduct mode analysis. The vehicle characteristics according to the vehicle condition were analyzed using FRF. In addition, the vehicle structural system and bump passing frequencies were discriminated based on their power spectra and other FRF spectra.

산업용 고속절단기의 기동 시 충격완화에 대한 연구 (A Study on Vibration Reduction of an Industrial Chop Saw in Operation)

  • 김두환;임형빈;정진태
    • 한국소음진동공학회논문집
    • /
    • 제19권9호
    • /
    • pp.892-898
    • /
    • 2009
  • In this paper, a cause of a shock of an industrial chop saw is identified by experimental method and the shock is reduced by structural modifications. For the shock identification, vibration signals are measured by an accelerometer when the chop saw operates. Through some experiments, it is found that the shock is occurred by a slip between a spindle and a wheelwasher of the chop saw. To reduce the shock, One method is to lower the mass moment of inertia of the wheelwasher and the angular rotating acceleration of it. Another method is to broaden a contact area between the wheelwasher and the spindle. After designing and analyzing the wheelwasher and the spindle mechanically, a prototype of them is built. With the manufactured prototype, the performances and design requirements of them are experimentally verified by the response measurements.

Modal Testing of Mechanical Structures Subject to Operational Excitation Forces

  • Gade, Svend;Moller, Nis B.;Herlufsen, Henrik;Brincker, Rune;Andersen, Palle
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1162-1165
    • /
    • 2001
  • Operational Modal Analysis also known as Output Only Modal Analysis has in the recent years been used for extracting modal parameters of civil engineering structures and is now becoming popular for mechanical structures. The advantage of the method is that no artificial excitation need to be applied to the structure or force signals to be measured. All the parameter estimation is based upon the response signals, thereby minimising the work of preparation for the test. This test case is a controlled lab set-up enabling different parameter estimation methods techniques to be used and compared to the Operational Modal Analysis. For Operational Modal Analysis two different estimation techniques are used: a non-parametric technique based on Frequency Domain Decomposition (FDD), and a parametric technique working on the raw data in time domain, a data driven Stochastic Subspace Identification (SS!) algorithm. These are compared to other methods such as traditional Modal Analysis.

  • PDF

Analytical and experimental modal analyses of a highway bridge model

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • 제12권6호
    • /
    • pp.803-818
    • /
    • 2013
  • In this study, analytical and experimental modal analyses of a scaled bridge model are carried out to extract the dynamic characteristics such as natural frequency, mode shapes and damping ratios. For this purpose, a scaled bridge model is constructed in laboratory conditions. Three dimensional finite element model of the bridge is constituted and dynamic characteristics are determined, analytically. To identify the dynamic characteristics experimentally; Experimental Modal Analyses (ambient and forced vibration tests) are conducted to the bridge model. In the ambient vibration tests, natural excitations are provided and the response of the bridge model is measured. Sensitivity accelerometers are placed to collect signals from the measurements. The signals collected from the tests are processed by Operational Modal Analysis; and the dynamic characteristics of the bridge model are estimated using Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods. In the forced vibration tests, excitation of the bridge model is induced by an impact hammer and the frequency response functions are obtained. From the finite element analyses, a total of 8 natural frequencies are attained between 28.33 and 313.5 Hz. Considering the first eight mode shapes, these modes can be classified into longitudinal, transverse and vertical modes. It is seen that the dynamic characteristics obtained from the ambient and forced vibration tests are close to each other. It can be stated that the both of Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are very useful to identify the dynamic characteristics of the bridge model. The first eight natural frequencies are obtained from experimental measurements between 25.00-299.5 Hz. In addition, the dynamic characteristics obtained from the finite element analyses have a good correlation with experimental frequencies and mode shapes. The MAC values obtained between 90-100% and 80-100% using experimental results and experimental-analytical results, respectively.

노면 변화에 따른 타이어 소음 특성 연구 (A Study on Tire Noise Characteristics for Various Road Surfaces)

  • 남경탁;강영규;이동하;김기전
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.148-151
    • /
    • 2005
  • Roughness of a road is an important parameter which not only indicates vehicle's vibration and noise, but it is also related to the contact force of the tire which is induced by tire's deformation and vibration. Since tire noise indeed comes from this deformation and vibration, the estimation of the force is the key factor fur the reduction of tire noise. Because of the difficulty of directly measuring the contact force, the indirect estimation is enforced from the vibration signature measured on the tire support. This study suggests the "inverse filtering" technique well known in modern digital signal processing, so as to reform the tire contact force from monitored vibration signals.

  • PDF

Investigation of water length effects on the modal behavior of a prototype arch dam using operational and analytical modal analyses

  • Sevim, Baris;Bayraktar, Alemdar;Altunisik, Ahmet Can
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.593-615
    • /
    • 2011
  • This study determines the water length effects on the modal behavior of a prototype arch dam using Operational and Analytical Modal Analyses. Achievement of this purpose involves construction of a prototype arch dam-reservoir-foundation model under laboratory conditions. In the model, reservoir length was taken to be as much as three times the dam height. To determine the experimental dynamic characteristics of the arch dam using Operational Modal Analysis, ambient vibration tests were implemented for empty reservoir and three different reservoir water lengths. In the ambient vibration tests, the dam was vibrated by natural excitations provided from small impact effects and the response signals were measured using sensitive accelerometers. Operational Modal Analysis software process signals collected from the ambient vibration tests, and Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques estimated modal parameters of the dams. To validate the experimental results, 3D finite element model of the prototype arch dam was modeled by ANSYS software for empty reservoir and three different reservoir water lengths, and dynamic characteristics of each model were determined analytically. At the end of the study, experimentally and analytically identified dynamic characteristics compared to each other. Also, changes on the natural frequencies along to water length are plotted as graphs. Results suggest that reservoir water complicates the modal behavior of the arch dam significantly.