• Title/Summary/Keyword: vibration performance test

Search Result 918, Processing Time 0.066 seconds

A Study on Endurance Improvement of Electrical Equipment according to Vibration Environment (진동환경에 따른 전기설비의 내구성 향상에 관한 연구)

  • Park, Keun-Seok;Shim, Jae-Myung;Lee, Dae-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1146-1151
    • /
    • 2014
  • The equipment in ships and railway vehicles are continuously exposed to vibration, and its durability is very important. Therefore, consumers require the verification of the performance of equipment via standardized tests under the given environments to improve and stabilize the performance. In this study, a durability improvement and stabilization plan was proposed, which included the exploratory vibration test, variable frequency test and endurance test for the electrical equipment according to the vibration environment. It is expected that this study results will improve the technological competitive power of the ship and railway-related manufacturers and contribute to the equipment development and export.

Isolation Mount Design for the Combat Computer Console Installed in Surface Ship (함정용 전술 컴퓨터 콘솔의 방진)

  • Kwon, Byung-Hyun;Kim, Joon;Kim, Jin-Cheon;Seo, Song-Hoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1772-1777
    • /
    • 2000
  • The Combat Computer Consoles installed in surface ships should endure harsh environment such as vibration from engine or propeller and shock from underwater explosion. Generally, commercial isolation mounts are selected and used for anti-vibration and anti-shock design. In this research, the environment of the Combat Computer Console was analyzed first. Selected proper mount was modeled and computer simulation was performed to emulate the environment test. The real environment test was conducted with a manufactured Combat Computer Console. The test results were same as the simulation and satisfied the performance requirements. The computer simulation proved to be a useful design tool to predict the performance before the final environment test.

  • PDF

Test and Simulation of an Active Vibration Control System for Helicopter Applications

  • Kim, Do-Hyung;Kim, Tae-Joo;Jung, Se-Un;Kwak, Dong-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.442-453
    • /
    • 2016
  • A significant source of vibration in helicopters is the main rotor system, and it is a technical challenge to reduce the vibration in order to ensure the comfort of crew and passengers. Several types of passive devices have been applied to conventional helicopters in order to reduce the vibration. In recent years, helicopter manufacturers have increasingly adopted active vibration control systems (AVCSs) due to their superior performance with lower weight compared with passive devices. AVCSs can also maintain their performance over aircraft configuration and flight condition changes. As part of the development of AVCS software for light civil helicopter (LCH) applications, a test bench is constructed and vibration control tests and simulations are performed in this study. The test bench, which represents the airframe, is excited using a pair of counter rotating force generators (CRFGs) and a multiple input single output (MISO) AVCS that consists of three accelerometer sensors and a pair of CRFGs; a filtered-x least mean square (LMS) algorithm is applied for the vibration reduction. First, the vibration control tests are performed with uniform sensor weights; then, the change in the control performance according to changes in the sensor weight is investigated and compared with the simulation results. It is found that the vibration control performance can be tuned through adjusting the weights of the three sensors, even if only one actuator is used.

Preliminary Study for the Reliability Assurance on Results and Procedure of the Out-pile Mechanical Characterization Test for a Fuel Assembly; Lateral Vibration Test(I) (핵연료 집합체 노외성능시험의 절차와 결과에 대한 신뢰성확보를 위한 예비고찰; 횡방향 진동특성시험(I))

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Kim, Hyung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1854-1858
    • /
    • 2007
  • The reliability assurance with respect to the test procedure and results of the out-pile mechanical performance test for the nuclear fuel assembly is an essential task to assure the test quality and to get a permission for fuel loading into the commercial reactor core. For the case of vibration test, which is carried out to obtain basic dynamic characteristics of the fuel assembly, proper management and appropriate calibration of instruments and devices used in the test, various efforts to minimize the possible error during the test and signal acquisition process are needed. Additionally, the deep understanding both of the theoretical assumption and simplification cation for the signal processing/modal analysis and of the functions of the devices used in the test were highly required. Finally, to verify the test result to represent the accurate natural characteristics of the structure, the proper correlation analysis between the theoretical and experimental method has to be carried out. In this study, the overall procedure and result of lateral vibration test for the fuel assembly's mechanical characterization were briefly introduced. A series of measures to assure and improve the reliability of the vibration test were discussed.

  • PDF

Pressure Drop and Flow-Induced Vibration Test for the HANARO Non-instrumented Irradiation Test Rig of Annular Fuel Pellet (환형소결체 하나로 조사시험용 무계장 리그의 차압 및 유동유발 진동시험)

  • Lee, Kang-Hee;Kim, Dae-Ho;Bang, Jae-Gun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.281-286
    • /
    • 2007
  • Needs of fuel's performance evaluation for the dual-cooled fuel pellet (annular shape) necessitate the irradiation test in the test reactor. Irradiation test rig for the HARARO reactor, which is a special-purposed equipment used for material, irradiation and creep test, must satisfy the operational requirement on the hydraulic characteristics and structural integrity. In this paper, pressure drop and flow-induced vibration test for the newly developed non-instrumented test rig were carried out using FIVPET as a out-pile evaluation test. The test results show that the new test rig satisfy the HANARO operational requirement with sufficient margin. The spectral response characteristics of the flow-induced vibration of the test rid were also discussed.

  • PDF

Analysis of the Vibration Characteristic for the Mine Detectable Test Platform (지뢰탐지 실험플랫폼의 진동 특성 분석)

  • Chang, YuShin;Kwak, NoJin;Han, SeungHoon;Ji, UnHo;Ji, ChangJin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.588-595
    • /
    • 2014
  • In this paper, analysis of the vibration Characteristic for the Mine Detectable Test Platform is described. The test platform system is the multi-sensor mine detectable vehicle. This multi-sensor mine detectable unit is more efficient detection performance than other conventional methods. The test platform system has five subsystems, the UWB(Ultra Wide Band) sensor scanner, the MD(Metal Detector) sensor scanner, the neutron sensor scanner, and the detectable vehicle. We perform the vibration tests for the test platform and analyze the vibration characteristic, such as the max displacement, the max deformation and the max Von-Misses Stress.

  • PDF

Analysis of the Vibration Characteristic for the Mine Detectable Test Platform (지뢰탐지 실험플랫폼의 진동 특성 해석)

  • Chang, YuShin;Kwak, NoJin;Han, SeungHoon;Ji, UnHo;Ji, ChangJin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.927-934
    • /
    • 2014
  • In this paper, analysis of the vibration characteristic for the mine detectable test platform is described. The test platform system is the multi-sensor mine detectable vehicle. This multi-sensor mine detectable unit is more efficient detection performance than other conventional methods. The test platform system has five subsystems, the UWB(ultra wide band) sensor scanner, the MD(metal detector) sensor scanner, the ND(neutron detector) sensor scanner, and the detectable vehicle. We perform the vibration tests for the test platform and analyze the vibration characteristic, such as the max displacement, the max deformation and the max Von-Misses stress.

Vertical Vibration Isolator for Reducing Structural Vibration (구조물의 진동저감을 위한 수직형 면진장치)

  • Choi, Sanghyun;Baek, Joon-Ho;Lee, You In
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • In these days, the design of a structure for reducing or eliminating noise and vibration is getting more important, as the social demands for reducing environmental pollution rise. In this paper, the basic concept and performance verification test results of the recently developed vertical vibration isolator are presented. The isolator attenuates vibration using the damping action from the friction plane made of PTFE and provides the restoring force from the polyurethane springs arranged in vertical and horizontal directions. The performance verification tests consist of a test for identifying performance change during load rate variation and a test for confirming the force-displacement relationship assumption in vibration force range.

The Development of an Automatic Dynamic Inspection System of a Balance Shaft Module (밸런스 샤프트 모듈 자동 동적검사 시스템 개발)

  • Seong, Eun-Je;Kang, Dae-Gyu;Jeong, Chan-Yong;Han, Chang-Soo;Kim, Myung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1231-1236
    • /
    • 2007
  • Balance Shaft Module is module parts that is installed to vehicles engine to reduce noise and vibration of vehicles engine. Balance Shaft Module's performance exerts important influence on performance of engine. Therefore, must be able to warrant quality and performance of Balance Shaft Module. Existing product found and revised error at continuous process of production, and estimated failure mode in Balance Shaft Module. Previous method hard to secure product that performance is excellent, and bring a lot of damages economically. Therefore, development of inspectin system for quality inspection of parts and performance test of assembly is essential in Balance Shaft Module. In this study, represented development process of automatic dynamic inspection system to test performance and detect breakdown of Balance Shaft Module that is producing in Dongbo.

  • PDF

Vibration Suppression Design on the Instrument Supporting Structure for the Optical Performance Measurement (대구경 반사경 광학성능 측정을 위한 간섭계 지지구조물의 진동저감 설계)

  • Kim, Hong-Bae;Lim, Jong-Min;Yang, Ho-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.205-208
    • /
    • 2005
  • Fabrication of large scaled mirror for the telescope application is the most challenging technology in recent year. Sophisticate technologies and know-how in fabrication and measurement are required to overcome the technological obstacles. KRISS(Korea Research Institute for Standards and Science) is now developing a large scaled mirror fabrication facility and KARI(Korea Aerospace Research Institute) is supporting the development. High precision interferometric test is required during the grinding and polishing of mirror to identify the surface profile precisely. The required fabrication accuracy of the mirror surface profile is $\lambda$/50 ms($\sim$10 nm for visible wave length). Thus the measurement accuracy should be far less than 10 m. To get this requirement, it is necessary to provide vibration free environment for the interferometer system and mirror under test. Thus the vibration responses on the mirror supporting table due to external vibration should be minimized by using a special isolation system. And the responses on the top of the tower, which hold the interferometer during test, should be minimized simultaneously. In this paper, we propose the concept design of vibration suppression system for the KRISS mirror fabrication facility.

  • PDF