• Title/Summary/Keyword: vibration performance

Search Result 3,954, Processing Time 0.032 seconds

Vibration Analysis of ultrasonic Horn for Flip-Chip Bonding (플립칩 접합용 초음파 혼의 진동해석)

  • Kim, Il-Kwang;Hong, Sang-Hyuk;Lee, Soo-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.364-367
    • /
    • 2008
  • Finite element model and the basic experimental method have been developed to help the design of the transverse ultrasonic horn for flip-chip bonding. With two types of design the horn performance and ultrasonic characteristics are verified by using laser vibrometer. These analysis and experiment results can be the fundamental data for ultrasonic horn design considering the vibration modes and performance.

  • PDF

Experimental System of Active control for Building Structures (구조물의 능동제어 실험을 위한 시스템 구성)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.274-285
    • /
    • 1998
  • Increasing flexibility and lightness of recently built high-rise buildings make the structures susceptible to loads such as earthquakes and winds. Therefore, higher performance vibration control systems to reduce the vibration levels are demanded more than any time in the past. One of typical active vibration control systems is the active mass damper(AMD). In this paper, an active vibration control system consisting of small shaking table, building model, sensors, signal processing board and AMD is constructed. The dynamic characteristics of these individual systems are investigated through the experimental study. The performance of the active vibration control system is verified through harmonic resonant load excitation on building model.

  • PDF

Performance Test of Isolator for Reaction Wheel Micro-Vibration (인공위성 반작용휠 미소진동 감쇠기의 성능 측정)

  • Oh, Shi-Hwan;Seo, Hyun-Ho;Yim, Jo-Ryeong;Rhee, Seung-Wu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.376-379
    • /
    • 2006
  • Reaction Wheel Assembly (RWA) is one of the major disturbance sources that have influence upon the Line of Sight (LOS) of payload. A micro-vibration induced by RWA is propagated through the satellite structure and decrease the LOS stability performance of payload. This effect shall be analyzed through the jitter analysis. If a requirement or specification of payload jitter level is found to be not satisfied according to the jitter analysis campaign, some modification or redesign should be done on the satellite structure or a couple of isolator should be attached on the RWA interface in order to reduce the transmitted vibration level of RWA. The purpose of ???RWA isolator test? is to roughly evaluate the performance of vibration suppression level with a passive RWA isolator made of rubber. For this test, actual RWA is used as a vibration source and a couple of cube-shaped rubber mount designed for satellite is used as a passive isolator. There may be several considerations in order to accommodate RWA isolator to spacecraft such as not only vibration reduction performance but also thermal conduction problem, mechanical size, RWA alignment problem, etc. But in this report the feasibility of RWA isolator is analyzed only in a vibration suppression point of view. As a result, high frequency vibration of RWA above 50Hz is perfectly attenuated with isolators, however, first harmonic components below 50Hz became larger due to the additional low frequency resonance modes of roll, pitch, yaw rigid body motion of RWA+bracket.

  • PDF

Neuro-Adaptive Vibration Control of a Composite Beam with Optical Fiber Sensor (신경망 제어기를 이용한 광섬유가 부착된 복합재 보의 진동제어)

  • Kim, Do-Hyung;Yang, Seung-Man;Han, Jae-Hung;Kim, Dae-Hyun;Lee, In;Kim, Chun-Gon;Hong, Chang-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.135-138
    • /
    • 2002
  • Experimental studies on vibration control of a composite beam with a piezoelectric actuator and an extrinsic Fabry-Perot interferometer (EFPI) have been performed using a neural network controller and an LQG controller. Vibration control performance was investigated in the nonlinear sensing range according to the vibration amplitudes. Using a neuro-controller, adaptive vibration control experiment has been performed for the structure with frequency variations, and its performance is compared with that of an LQG controller. The vibration control results show that the neuro-controller has good performance and robustness with respect to the system parameter variations.

  • PDF

Vibration Control of a Glass-Fiber Reinforced Termoplastic Composite Beam (유리섬유를 함유한 열가소성 복합재 보의 진동제어)

  • 권대규;윤여흥;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.11-14
    • /
    • 2000
  • This paper presents the vibration control of a glass-fiber reinforced thermoplastic composite beam with a distributed PVDF sensor and piezo-ceramic achlator. The three types of different controllen which are PID, H$\infty$ , and p-synthesis ontrollcr are employed to achieve vibration suppression in the transient vibration of composite beam. In the H$\infty$ , controller design, 1st and 2nd natural frequencies are considered in the modeling, because robust control theory which has robustness to struchred uncertainty is adopled Lo suppress the vibration. If the controller designed by H$\infty$ , theory does not satisfy control performance, it is improved by $\mu$ -synthesis method with D-K iteration so that the$\mu$-contoller based on the structured singular value satisfies the nominal performance and robust performance Simulations and experiments were carried out with the designed controllers m order to demonstrate the suppression efficiency of each controller.

  • PDF

Sensor Placement in Structural Vibration Control For the Performance of Modal Filter (모달필터 성능을 고려한 센서의 최적위치)

  • 황재혁;김준수;백승호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.308-315
    • /
    • 1997
  • In this study, the effect of modal filter error on the vibration control characteristics of flexible structures is analyzed for IMSC(Independent Modal Space Control), and optimal sensor placement in the structural vibration control with consideration of performance of modal filter has been studied. An Lyapunov asymptotic stability condition has been derived, which depends on the magnitude of the modal filter errors. The extent of the response deviation of the closed-loop system is also derived and evaluated using operator techniques. A sensor placement technique has also been suggested to maximize the performance of the modal filter. It has been found by a series of simulation that the suggested sensor placement technique is very effective on the determination of the number and placement of sensors of modal filter in the structural vibration control.

  • PDF

A Technique for Measuring Vibration Displacement Using Camera Image (카메라 영상을 이용한 진동변위 측정)

  • Son, Ki-Sung;Jeon, Hyeong-Seop;Park, Jin-Ho;Park, Jong Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.789-796
    • /
    • 2013
  • Vibration measurements using image processing have been studied by many researchers as it can remotely measure vibration displacements at multiple points simultaneously. It is difficult, however, to obtain accurate displacement from the measured image signals because the resolution of image data is dependent on camera performance and normally lower than that of vibration transducer directly measured. This paper suggests the enhanced technique for vibration displacement measurement by applying the expected value of edge probability distribution to the varying pixel points in the image. The method can both increase the resolution limit of camera image and decrease the measurement errors. The working performance of the proposed technique is verified applying to the vibration measurement of a rotating machine.

Vibration Fatigue Analysis of Automotive Fuel Tank Using Transfer Function Method (Transfer Function Method를 이용한 자동차 연료탱크의 진동 피로 해석에 대한 연구)

  • Ahn, Sang Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.27-33
    • /
    • 2020
  • In this paper, the process of predicting efficient durability performance for vibration durability test of automobile parts using vibration test load on automobile fuel tank is presented. First of all, the common standard load that can be applied to the initial development process of the automobile was used for the fuel tank and the vulnerability of the fuel tank to the vibration fatigue load was identified through frequency response analysis. In addition, the vulnerability of the fuel tank was re-enacted through vibration durability test results, and the scale factor was applied to the standard load. In order to predict the vibration durability performance required for detailed design, vibration fatigue analysis was performed on the developed vehicle with the frequency of vibration severity equivalent to the durability test, and the vulnerability and life span of the fuel tank were identified through the process of applying weights to these selected standard loads, thereby reducing the test time of the development vehicle.

Sound Insulation Performance According to Stud Shape of Dry Wall (스터드 형상에 따른 Dry Wall의 차음성능변화)

  • An, JangHo;Kim, KyungHo;Lee, HunSeo;Kim, SeongHoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.407-412
    • /
    • 2013
  • In dry wall, noise is passed through gypsum board and stud. Noise makes gypsum board vibration. Then, the vibration passes through stud and gypsum board as resonation. And radiation as noise from surface of gypsum board into adjacent room. At this moment, according to thickness, placement and cross-section of stud, noise transmission ratio changes. Thicker stud has better sound insulation performance. Studs are apart from each other, has better sound insulation performance. But, single stud structure has restriction of thickness and arrange of studs. In this article, Sound insulation performance varies depending on the shape of the studs were studied.

  • PDF

Verification of Launch Vibration and Shock Isolation Performance for Spaceborne Compressor Vibration Isolator with SMA Mesh Washer (형상기억합금 메쉬 와셔를 이용한 우주용 냉각기 진동절연기의 발사 진동 및 충격 저감 성능검증)

  • Lee, Myeong-Jae;Han, Je-Heon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.517-524
    • /
    • 2014
  • Micro-vibration induced by on-board equipments such as fly-wheel and cryogenic cooler with mechanical moving parts affects the image quality of high-resolution observation satellite. Micro-vibration isolation system has been widely used for enhancing the pointing performance of observation satellites. In general, the micro-vibration isolation system requires a launch locking mechanism additionally to guarantee the structural safety of mission payloads supported by the isolation system with low stiffness under launch environment. In this study, we propose a passive launch and on-orbit vibration isolation system using shape memory alloy mesh washers for the micro-vibration isolation of spaceborne compressor, which does not require the additional launch locking mechanism. The basic characteristics of the isolator were measured in static and free vibration tests of the isolator, and a simple equivalent model of the isolator was proposed. The effectiveness of the isolator design in a launch environment was demonstrated through sine vibration, random vibration and shock tests.