• 제목/요약/키워드: vibration of concrete beam

검색결과 93건 처리시간 0.029초

Vibration behaviors of a damaged bridge under moving vehicular loads

  • Yin, Xinfeng;Liu, Yang;Kong, Bo
    • Structural Engineering and Mechanics
    • /
    • 제58권2호
    • /
    • pp.199-216
    • /
    • 2016
  • A large number of bridges were built several decades ago, and most of which have gradually suffered serious deteriorations or damage due to the increasing traffic loads, environmental effects, and inadequate maintenance. However, very few studies were conducted to investigate the vibration behaviors of a damaged bridge under moving vehicles. In this paper, the vibration behaviors of such vehicle-bridge system are investigated in details, in which the effects of the concrete cracks and bridge surface roughness are particularly considered. Specifically, two vehicle models are introduced, i.e., a simplified four degree-of-freedoms (DOFs) vehicle model and a more complex seven DOFs vehicle model, respectively. The bridges are modeled in two types, including a single-span uniform beam and a full scale reinforced concrete high-pier bridge, respectively. The crack zone in the reinforced concrete bridge is considered by a damage function. The bridge and vehicle coupled equations are established by combining the equations of motion of both the bridge and vehicles using the displacement relationship and interaction force relationship at the contact points between the tires and bridge. The numerical simulations and verifications show that the proposed modeling method can rationally simulate the vibration behaviors of the damaged bridge under moving vehicles; the effect of cracks on the impact factors is very small and can be neglected for the bridge with none roughness, however, the effect of cracks on the impact factors is very significant and cannot be neglected for the bridge with roughness.

Vibration analysis of CFST tied-arch bridge due to moving vehicles

  • Yang, Jian-Rong;Li, Jian-Zhong;Chen, Yong-Hong
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.389-403
    • /
    • 2010
  • Based on the Model Coupled Method (MCM), a case study has been carried out on a Concrete-Filled Steel Tubular (CFST) tied arch bridge to investigate the vibration problem. The mathematical model assumed a finite element representation of the bridge together with beam, shell, and link elements, and the vehicle simulation employed a three dimensional linear vehicle model with seven independent degrees-of-freedom. A well-known power spectral density of road pavement profiles defined the road surface roughness for Perfect, Good and Poor roads respectively. In virtue of a home-code program, the dynamic interaction between the bridge and vehicle model was simulated, and the dynamic amplification factors were computed for displacement and internal force. The impact effects of the vehicle on different bridge members and the influencing factors were studied. Meanwhile the acceleration responses of some of the components were analyzed in the frequency domain. From the results some valuable conclusions have been drawn.

리모델링 건축물의 바닥슬래브 사용성 및 바닥충격음 성능개선 (Improvement In the Serviceability of Floor Slab of Remodeled Building and the Performance of Floor Impact Noise)

  • 이병권;배상환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1243-1246
    • /
    • 2006
  • As remodeling market is growing and peoples' concern on health and well-being is getting high, there is a need to apply environmentally friendly approach to remodeling an apartment houses. But, in point of the impact noise concerned, the thickness of the concrete slab and the limited ceiling height of the remodelling houses are the main constraints to improve the impact noise performance. In order to investigate the effect of the impact noise isolation as structural treatments for the structural elements, heavy-weight impact noise and tapping noise were measured in an remodeling building. As a result, structural strengthening method by H-beam was successful to enhance the impact noise level at about 3 or 4 class by the sound classification system.

  • PDF

Synergic identification of prestress force and moving load on prestressed concrete beam based on virtual distortion method

  • Xiang, Ziru;Chan, Tommy H.T.;Thambiratnam, David P.;Nguyen, Theanh
    • Smart Structures and Systems
    • /
    • 제17권6호
    • /
    • pp.917-933
    • /
    • 2016
  • In a prestressed concrete bridge, the magnitude of the prestress force (PF) decreases with time. This unexpected loss can cause failure of a bridge which makes prestress force identification (PFI) critical to evaluate bridge safety. However, it has been difficult to identify the PF non-destructively. Although some research has shown the feasibility of vibration based methods in PFI, the requirement of having a determinate exciting force in these methods hinders applications onto in-service bridges. Ideally, it will be efficient if the normal traffic could be treated as an excitation, but the load caused by vehicles is difficult to measure. Hence it prompts the need to investigate whether PF and moving load could be identified together. This paper presents a synergic identification method to determine PF and moving load applied on a simply supported prestressed concrete beam via the dynamic responses caused by this unknown moving load. This method consists of three parts: (i) the PF is transformed into an external pseudo-load localized in each beam element via virtual distortion method (VDM); (ii) then these pseudo-loads are identified simultaneously with the moving load via Duhamel Integral; (iii) the time consuming problem during the inversion of Duhamel Integral is overcome by the load-shape function (LSF). The method is examined against different cases of PFs, vehicle speeds and noise levels by means of simulations. Results show that this method attains a good degree of accuracy and efficiency, as well as robustness to noise.

철근콘크리트 구조물에 대한 반복하중속도의 영향에 관한 연구 (Effects of Cyclic Loading Rate on response of Reinforced Concrete Structures)

  • 정란;박현수
    • 전산구조공학
    • /
    • 제2권3호
    • /
    • pp.77-84
    • /
    • 1989
  • 본 논문의 내용은 철근콘크리트 보-기둥 접합부가 지진 하중을 받을 때의 거동에 대하여 관찰한 것이다. 똑같이 제작된 두개의 시험체에 정적 반복하중과 동적 반복하중을 가하여 하중-처짐 곡선이나 파괴 성상 등에 관하여 차이점을 기록하였다. 동적하중을 받는 시험체의 거동은 내진설계 규준에서 일반적으로 쓰여지는 정적하중 하에서의 시험체의 거동과는 판이한 양상을 보여주었다. 시험체가 동적하중을 받을 때에는 정적하중을 받을 때 보다 1. 극한하중이 20-25% 증가하고 2. 높은 취성을 보이며 3. 균열이 집중되고 4. 휨파괴 보다는 전단파괴현상을 나타내었다.

  • PDF

Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer

  • Laib, Salaheddine;Meftah, Sid Ahmed;Youzera, Hadj;Ziane, Noureddine;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.253-268
    • /
    • 2021
  • The present paper treats the free vibration problem of the masonry wall strengthened with thin composite plate by viscoelastic adhesive layer. For this goal two steps are considered in the analytical solution. In the first one, an efficient homogenisation procedure is given to provide the anisotropic properties of the masonry wall. The second one is dedicated to purpose simplified mathematical models related to both in-plane and out-of-plane vibration problems. In these models, the higher order shear theories (HSDT's) are employed for a more rigours description of the shear deformation trough the masonry wall and the composite sheet. Ritz's method is deployed as solution strategy in order to get the natural frequencies and their corresponding loss factors. The obtained results are validated with the finite element method (FEM) and then, a parametric study is undertaken for different kinds of masonry walls strengthened with composite sheets.

양단단순-양단자유지지된 특별직교 이방성 적층복합판의 진동해석을 위한 간편법 (A Simple Method of Vibration Analysis of Special Orthotropic Plate with A Pair of Opposite Edges Simply Supported and The Other Pair of Opposite Edges Free)

  • Kim Duk-Hyun;Kim, Kyeong-Jin;Hong, Chang-Woo
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.135-142
    • /
    • 1996
  • In this paper, a simple tut accurate method of vibration analysis of structural elements with or without attached mass/masses is presented. The method used has been developed by the senior author since 1974. This method is very effective for the plates with arbitrary boundary conditions and irregular sections. This method is applied to the special orthotropic Plate with two opposite edges simply supported and the other two opposite edges free. Such plate represents the most of the simply supported bridges/decks, including concrete and girders-cross beam systems. Detailed illustration is given for beams and plates for easy understanding. Some laminate orientation for which the special orthotropic equations can be applied are identified.

  • PDF

Thermal post-buckling and primary resonance of porous functionally graded beams: Effect of elastic foundations and geometric imperfection

  • Jia-Qin Xu;Gui-Lin She
    • Computers and Concrete
    • /
    • 제32권6호
    • /
    • pp.543-551
    • /
    • 2023
  • In this article, thermal post-buckling and primary resonance of the porous functionally graded material (FGM) beams in thermal environment considering the geometric imperfection are studied, the material properties of FGM beams are assumed to vary along the thickness of the beam, meanwhile, the porosity volume fraction, geometric imperfection, temperature, and the elastic foundation are considered, using the Euler-Lagrange equation, the nonlinear vibration equations are derived, after the dimensionless processing, the dimensionless equations of motion can be obtained. Then, the two-step perturbation method is applied to solve the vibration problems, the resonance and thermal post-buckling response relations are obtained. Finally, the functionally graded index, the porosity volume fraction, temperature, geometric imperfection, and the elastic foundation on the resonance behaviors of the FGM beams are presented. It can be found that these parameters can influence the thermal post-buckling and primary resonance problems.

복합재료 샌드위치 판의 고유 진동수에 대한 탄성보의 영향 (The Influence on Elastic Beam for Natural Frequency of Composite Sandwich Plate)

  • 이봉학;원치문;이정호;김성환
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.191-197
    • /
    • 1997
  • For each construction material used, there is certain theoretical limit in sizes. For tall building construction, the reduction in slab weight is the first step to take in order to break such size limits. In this paper, the feasibility of such objective is proven and given by numerical analysis result. For a typical building slab, both concrete and advanced composite sandwich panels are considered. The concrete slab is treated as a special orthotropic plate to obtain more accurate result. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation on the natural frequency is thoroughly studied.

  • PDF

배열 마이크로폰을 이용한 레일 방사 소음 측정에 관한 이론 해석 (Theoretical Analysis on the Array Microphone Measurement for Noise from Rails)

  • 유정수;장승호;권휴상
    • 한국음향학회지
    • /
    • 제33권4호
    • /
    • pp.238-247
    • /
    • 2014
  • 본 논문에서는 철도 전동 소음의 주요 소음원인 레일 소음의 방사 특성을 이론적으로 해석하고 배열 마이크로폰을 이용한 레일 소음 측정 시 발생하는 현상들에 관해 이론적으로 고찰하였다. 철도 궤도는 국내 고속철도 콘크리트 도상 궤도를 대상으로 하였으며, 레일에 고속의 이동 하중이 작용하는 경우에 대한 진동 및 소음 방사 특성을 해석하였다. 본 연구를 통해 이동 하중이 작용할 때 발생하는 레일의 소음 방사 특성을 파악하였으며, 배열 마이크로폰을 이용한 레일 소음 측정시 빔 각도가 배열 마이크로폰 출력 음압에 중요하게 작용함을 확인하였다. 따라서 배열 마이크로폰을 이용해 레일 소음을 규명하기 위해서는 레일의 방사 특성을 반영한 배열 마이크로폰 빔 각도 설정이 필요함을 이해하였다.