• 제목/요약/키워드: vibration energy harvesting

검색결과 181건 처리시간 0.027초

A New Vibration Energy Harvester Using Magnetoelectric Transducer

  • Yang, Jin;Wen, Yumei;Li, Ping;Dai, Xianzhi;Li, Ming
    • Journal of Magnetics
    • /
    • 제16권2호
    • /
    • pp.150-156
    • /
    • 2011
  • Magnetoelectric (ME) transducers were originally intended for magnetic field sensors but have recently been used in vibration energy harvesting. In this paper, a new broadband vibration energy harvester has been designed and fabricated to be efficiently applicable over a range of source frequencies, which consists of two cantilever beams, two magnetoelectric (ME) transducers and a magnetic circuit. The effects of the structure parameters, such as the non-linear magnetic forces of the ME transducers and the magnetic field distribution of the magnetic circuit, are analyzed for achieving the optimal vibration energy harvesting performances. A prototype is fabricated and tested, and the experimental results on the performances show that the harvester has bandwidths of 5.6 Hz, and a maximum power of 0.25 mW under an acceleration of 0.2 g (with g = $9.8\;ms^2$).

압전 발전기를 이용한 에너지 수확 장치 개발 (Development of the Energy Harvesting Device using Piezoelectric Generator)

  • 전호익;정성수;정현호;박충효;박민호;박태곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.439-439
    • /
    • 2009
  • Nowadays, source of MEMS, USN, Hybrid parts pay attention to energy harvesting. On this paper, energy harvesting was studied using piezoelectric effect. And, piezoelectric generator was designed and fabricated. Generators were designed by FEM simulation program and generators were made by attaching cymbal type metal plates on upper and bottom sides of a disc type piezoelectric ceramic. Output AC power was rectified to DC power by full bridge circuit and converted to regular voltage power by DC-DC converter. The final output power was charged to Ni-Cd battery. Using fabricated generators, output voltages dependant on thickness of ceramic, displacement of vibration, frequency of vibration were measured.

  • PDF

원판형 압전 세라믹을 이용한 에너지 수확 (Energy Harvesting Using Disc Type Piezoelectric Ceramics)

  • 전호익;정성수;정현호;박민호;박태곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.53-54
    • /
    • 2009
  • Nowadays, source of MEMS, USN, Hybrid parts pay attention to energy harvesting. On this paper, energy harvesting was studied using piezoelectric effect. And, piezoelectric generator was designed and fabricated. Generators were designed by FEM simulation program and generators were made by attaching cymbal type metal plates on upper and bottom sides of a disc type piezoelectric ceramic. Using fabricated generators, output voltages dependant on thickness of ceramic, displacement of vibration, frequency of vibration were measured.

  • PDF

Sustainable Vibration Energy Harvesting Based on Zr-Doped PMN-PT Piezoelectric Single Crystal Cantilevers

  • Moon, Seung-Eon;Lee, Sung-Q;Lee, Sang-Kyun;Lee, Young-Gi;Yang, Yil-Suk;Park, Kang-Ho;Kim, Jong-Dae
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.688-694
    • /
    • 2009
  • In this paper, we present the results of a preliminary study on the piezoelectric energy harvesting performance of a Zr-doped $PbMg_{1/3}Nb_{2/3}O_3-PbTiO_3$ (PMN-PZT) single crystal beam. A novel piezoelectric beam cantilever structure is used to demonstrate the feasibility of generating AC voltage during a state of vibration. The energy-harvesting capability of a PMN-PZT beam is calculated and tested. The frequency response of the cantilever device shows that the first mode resonance frequency of the excitation model exists in the neighborhood of several hundreds of hertz, which is similar to the calculated value. These tests show that several significantly open AC voltages and sub-mW power are achieved. To test the possibility of a small scale power source for a ubiquitous sensor network service, energy conversion and the testing of storage experiment are also carried out.

압전 후막의 전단 변형을 이용한 나선형 MEMS 발전기 (A Novel Spiral Type MEMS Power Generator with Shear Mode Piezoelectric Thick Film)

  • 송현철;김상종;문희규;강종윤;윤석진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.219-219
    • /
    • 2008
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for ubiquitous sensor networks (USN). There are several power generating methods such as thermal gradients, solar cell, energy produced by human action, mechanical vibration energy, and so on. Most of all, mechanical vibration is easily accessible and has no limitation of weather and environment of outdoor or indoor. In particular, the piezoelectric energy harvesting from ambient vibration sources has attracted attention because it has a relative high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system hassome drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure. In this case, the energy harvester has a lower natural frequency under 200 Hz than a normal cantilever structure. Moreover, it has higher an energy conversion efficient because shear mode ($d_{15}$) is much larger than 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate as a standalone power generator for USN.

  • PDF

압전종이를 이용한 그린에너지 하베스터 (Green Energy Harvester using a Piezoelectric Regenerated Paper)

  • 고현우;권연호;윤규영;김주형;김재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.198-201
    • /
    • 2009
  • Due to piezoelectric property of regenerated cellulose paper, a green energy harvester using an electro-active paper (EAPap) was studied. In order to design the green energy harvester, we simulated cymbal type energy harvesting structures for single and multi-stacked layers of EAPap films. From the simulation, the optimized material orientation, thickness of harvesting structure was selected. By measuring of the induced output voltage by applying stress on energy harvester will be explained in detail. Therefore we propose the feasibility of the nature-friendly piezoelectric EAPap as a new green energy harvesting material.

  • PDF

타원형 압전 에너지 하베스터의 기계적 모델링 연구 (Study of Mechanical Modeling of Oval-shaped Piezoelectric Energy Harvester)

  • 최재훈;정인기;강종윤
    • 센서학회지
    • /
    • 제28권1호
    • /
    • pp.36-40
    • /
    • 2019
  • Energy harvesting is an advantageous technology for wireless sensor networks (WSNs) that dispenses with the need for periodic replacement of batteries. WSNs are composed of numerous sensors for the collection of data and communication; hence, they are important in the Internet of Things (IoT). However, due to low power generation and energy conversion efficiency, harvesting technologies have so far been utilized in limited applications. In this study, a piezoelectric energy harvester was modeled in a vibration environment. This harvester has an oval-shaped configuration as compared to the conventional cantilever-type piezoelectric energy harvester. An analytical model based on an equivalent circuit was developed to appraise the advantages of the oval-shaped piezoelectric energy harvester in which several structural parameters were optimized for higher output performance in given vibration environments. As a result, an oval-shaped energy harvester with an average output power of 2.58 mW at 0.5 g and 60 Hz vibration conditions was developed. These technical approaches provided an opportunity to appreciate the significance of autonomous sensor networks.

[001] 및 [011] 방향 분극의 압전 단결정 PMN-PZT 를 이용한 진동 에너지 수확 특성 (Performance Characteristics of Vibration Energy Harvesting Using [001] and [011]-Poled PMN-PZT Single Crystals)

  • 선경호;김영철;김재은
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.539-543
    • /
    • 2014
  • This work investigated the electromechanical performance of a cantilevered vibration energy harvester incorporating the single crystal PMN-PZT, manufactured with the most recent technology of solid-state single crystal growth. Single crystal PMN-PZTs with two different crystallographic axes such as [011] and [001] were considered. For the [011] orientation, because material properties such as the stiffness, piezoelectric strain coefficients are not the same in the directions normal to the crystallographic axis, the effects of the transversely anisotropy on the magnitude and frequency bandwidth of output power were also analyzed.

  • PDF

MPPT 제어기능을 갖는 빛과 진동 에너지를 이용한 에너지 하베스팅 회로 설계 (Design of an Energy Harvesting Circuit Using Solar and Vibration Energy with MPPT Control)

  • 윤은정;황인호;박종태;유종근
    • 전기전자학회논문지
    • /
    • 제16권3호
    • /
    • pp.224-234
    • /
    • 2012
  • 본 논문에서는 초소형 센서노드를 위한 MPPT(Maximum Power Point Tracking) 제어기능을 갖는 빛과 진동 에너지를 이용한 에너지 하베스팅 회로를 설계하였다. 설계된 회로는 MPPT 제어를 통해 온칩 솔라 셀과 압전소자로부터 최대 가용 전력을 수확하고, 수확된 에너지를 저장 커패시터에 병합하여 저장한다. 병합된 에너지는 PMU(Power Management Unit)를 통해 센서노드로 공급된다. MPPT 제어는 변환소자의 개방전압과 MPP 전압간의 비례관계를 이용하여 구현하였다. 제안된 회로는 0.18um CMOS 공정으로 설계하였으며, 모의실험을 통해 동작을 검증하였다. 설계된 에너지 하베스팅 회로와 온칩 솔라 셀의 칩 면적은 각각 $2.85mm^2$$8mm^2$이다.

Optimal vibration energy harvesting from nonprismatic piezolaminated beam

  • Biswal, Alok R;Roy, Tarapada;Behera, Rabindra K
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.403-413
    • /
    • 2017
  • The present article encompasses a nonlinear finite element (FE) and genetic algorithm (GA) based optimal vibration energy harvesting from nonprismatic piezo-laminated cantilever beams. Three cases of cross section profiles (such as linear, parabolic and cubic) are modelled to analyse the geometric nonlinear effects on the output responses such as displacement, voltage, and power. The simultaneous effects of taper ratios (such as breadth and height taper) on the output power are also studied. The FE based nonlinear dynamic equation of motion has been solved by an implicit integration method (i.e., Newmark method in conjunction with the Newton-Raphson method). Besides this, a real coded GA based constrained optimization scheme has also been proposed to determine the best set of design variables for optimal harvesting of power within the safe limits of beam stress and PZT breakdown voltage.