• Title/Summary/Keyword: vibration effect

Search Result 3,876, Processing Time 0.033 seconds

The Grid Strap Vibration Characteristics of the 5×5 Nuclear Fuel Mock-up (5×5 핵연료 모의 집합체의 지지격자 스트랩 진동특성)

  • Kim, Kyoung-Hong;Park, Nam-Gyu;Kim, Kyoung-Ju;Suh, Jung-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.619-625
    • /
    • 2012
  • Since the fuel is always exposed to turbulent flow, the grid strap shows flow induced vibration characteristics that impact on the nuclear fuel soundness. The dynamic behavior of grids in nuclear fuels is quite complex, since two pairs of spring and dimple support are contacted with rods by friction in the limited space. This paper focuses on investigation of the grid strap(test fuel strap, TFS) vibration in one cell. TFS consists of a single spring and double dimples. To identify the grid strap vibration, modal analysis of the strap is performed using finite element method(FEM). Modal testing on a $5{\times}5$ grid structure without rods is performed. The modal testing results are compared to analytic results. In addition, random test considering rod effect is performed about a $5{\times}5$ grid with rods under real contact condition in the air. Finally, the strap vibration of a $5{\times}5$ fuel bundle in investigation of flow induced vibration(INFINIT) facility is measured in real fluid velocity condition without heating. It is shown that modal frequencies from the test are almost equal to those peak frequencies in the INFINIT test.

Experimental Performance Evaluation of MR Damper for Integrated Isolation Mount (통합제진마운트용 MR 댐퍼의 실험적 성능 평가)

  • Seong, Min-Sang;Choi, Seung-Bok;Kim, Cheol-Ho;Lee, Hong-Ki;Baek, Jae-Ho;Han, Hyun-Hee;Woo, Je-Kwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1161-1167
    • /
    • 2010
  • This paper presents experimental performance evaluation of a magnetorheological(MR) damper for integrated isolation mount for ultra-precision manufacturing system. The vibration sources of the ultra-precision manufacturing system can be classified as follows: the one is the environmental vibration from the floor and the other is the transient vibration occurred from stage moving. The transient vibration occurred from the stage moving has serious adverse effect to the process because the vibration scale is quite larger than other vibrations. Therefore in this research, a semi-active MR damper, which can control the transient vibration, is adopted. Also the stage needs to be isolated from tiny vibrations from the floor. For this purpose, a dry-frictionless MR damper is required. In order to achieve this goal, a novel type of MR damper is originally designed and manufactured in this work. Subsequently, the damping force characteristics of MR damper are evaluated by simulation and experiment. In addition, the vibration control performance of the MR damper associated with the stage mass is evaluated.

Effect on Vibration of Start-up Condition and Retrofit of Steam Turbines (증기터빈의 기동조건과 성능개선이 터빈의 진동에 미치는 영향)

  • Lee, Hyuk Soon;Chung, Hyuk Jin;Song, Woo Sok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • The analysis shows that the vibration is one of the main reasons of turbine failure. Especially, the problems caused by vibration occur right after retrofit of the turbine-generator and restarting the turbine. Through the case study of high vibration caused by after the turbine trip and restart, turbine vibration was identified to be influenced by startup condition. Turbine startup at high casing temperature right after unscheduled turbine trip cause radial expansion in rotor by contraction in axial direction, while casing continues to contract by steam flowing into casing. Consequently, gap between rotor and casing decrease until to metal contact to cause high vibration. Through the case study of high vibration of turbine-generator system after generator retrofit, it was identified that generator replacement could cause high vibration in turbine-generator system if the influence of generator replacement on entire system was not considered properly. To prevent startup delay caused by high vibration, it is important to keep the gaps at the design standard and start the turbine after thermal equilibrium.

Parametric study of pendulum type dynamic vibration absorber for controlling vibration of a two DOF structure

  • Bur, Mulyadi;Son, Lovely;Rusli, Meifal;Okuma, Masaaki
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • Passive dynamic vibration absorbers (DVAs) are often used to suppress the excessive vibration of a large structure due to their simple construction and low maintenance cost compared to other vibration control techniques. A new type of passive DVA consists of two pendulums connected with spring and dashpot element is investigated. This research evaluated the performance of the DVA in reducing the vibration response of a two degree of freedom shear structure. A model for the two DOF vibration system with the absorber is developed. The nominal absorber parameters are calculated using a Genetic Algorithm(GA) procedure. A parametric study is performed to evaluate the effect of each absorber parameter on performance. The simulation results show that the optimum condition for the absorber frequencies and damping ratios is mainly affected by pendulum length, mass, and the damping coefficient of the pendulum's hinge joint. An experimental model validates the theoretical results. The simulation and experimental results show that the proposed technique is able be used as an effective alternative solution for reducing the vibration response of a multi degree of freedom vibration system.

Analysis on natural vibration characteristics of steel-concrete composite truss beam

  • Jiang, Lizhong;Feng, Yulin;Zhou, Wangbao;He, Binbin
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2018
  • In order to study the natural vibration characteristics of steel-concrete composite truss beam (SCCTB), the influence of multiple factors such as interface slip, shear deformation and moment of inertia are considered. Afterwards, based on the Hamilton principle the vibration control differential equation and natural boundary conditions of SCCTB are deduced. By solving SCCTB differential equations of vibration control, an analytical calculation method is proposed for analyzing the natural vibration characteristics of SCCTB. The natural frequencies of SCCTBs with different degrees of shear connection and effective lengths are calculated by using the analytical method, and the results are compared against those obtained from ANSYS finite element numerical calculation method. The results show that the analytical method considering the influence factors such as interface slip, shear deformation and moment of inertia are in good agreement with those obtained from ANSYS finite element numerical calculation method. This evidences the correctness of the analytical method and show that the method proposed exhibits improvement over the previously developed theories for the natural vibration characteristics of SCCTB. Finally, based on the analytical method, the influence factors of SCCTB natural vibration characteristics are analyzed. The results indicate that the influence of interface slip stiffness on SCCTB's natural frequency is more than 10% and therefore cannot be neglected. Moreover, shear deformation has an effect of more than 35% on SCCTB's natural frequency and the effect cannot be ignored either in this case too.

Characteristics of Ride Vibrations in Rotary Tillage and Plowing Operations by Tractor (트랙터 로터리 작업과 쟁기 작업의 승차 진동 특성)

  • 박영준;박서범;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.29 no.3
    • /
    • pp.207-216
    • /
    • 2004
  • This study was intended to investigate the characteristics of ride vibrations transmitted to tractor operator during rotary tillage and plowing operations. Seat accelerations of a 41 ps diesel tractor in rotary tillage and plowing were measured and evaluated as specified in the ISO 2631-1. Effects of working speed and tilling depth on ride vibration were investigated. The level of ride vibration was also evaluated in terms of health guidance caution zones. Some of the results of the study are as follows: 1. The level of ride vibration in plowing was about 4.3 times greater than in rotary tillage. 2. The effect of working speed in rotary tillage differs depending upon the tillage depth. The level of ride vibration was increased with the speed, but it decreased over a certain tillage depth. Fore and aft vibration was 2.2-2.7 times severer than horizontal and vertical vibrations. Dominant frequency band was 1-3.15 ㎐ in fore and aft, 1-3.15㎐ and 16-25㎐ in horizontal, and 16-25㎐ in vertical directions. 3. Plowing reduced the ride vibration by 42.8-50.2%. But its positive effect decreased as the plowing speed increased. In plowing operation, ride vibration was similar degrees in fore and aft, horizontal and vertical directions. The dominant frequency band in plowing operation was 1-2.5㎐ in fore and aft, 1-2.5㎐ in horizontal, and 1-8㎐ in vertical directions. 4. On a basis of daily work hours of 4, total level of ride vibrations in plowing operation is likely to be harmful to operator's health.

Review of Propellant Vibration and Control of Liquid Rocket Fuselage Feeding System (액체로켓 기체공급계의 추진제 진동특성 및 제어기술 동향)

  • Cho, Nam-Kyung;Kho, Hyun-Seok;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.89-94
    • /
    • 2010
  • Fuselage propellant feeding system should supply propellants to engine with required flow rate, temperature and pressure. Propellant vibration in engine and feeding line changes feeding characteristics, and frequently inhibits to satisfy the required feeding requirements. Sloshing and POGO vibration are known to be the major vibration phenomena. Concerning sloshing and POGO, vehicle control and structural dynamics aspects are extensively studied, whereas, its effect on propellant feeding performance is not clearly understood. This paper focuses on the deviation of required feeding performance due to propellant vibration. Overall characteristics of propellant vibration and its effect on propellant supply to engine are reviewed and control mechanism for suppressing vibration is introduced.

  • PDF

A Study on Delay Time Control for Lowering Grounding Vibration and Noise Induced by Blasting (발파에 의한 지반진동 및 소음 저감을 위한 지연시차 조절에 관한 연구)

  • Lee, Bong-Hyun;Choi, Sung-Oong
    • Explosives and Blasting
    • /
    • v.32 no.3
    • /
    • pp.18-25
    • /
    • 2014
  • Ground vibration and noise from blasting operation are known to be the most representative constituents which can cause human and material damage. In this study, the effect of delay time on ground vibration is investigated by adopting seven different delay times in bench blasting. For each delay time, three blasting operations were performed. The prediction equations for blasting vibration are derived from 50 sets of measurement and the time theory of Langefors is evoked in the analysis of the blasting vibrations and frequencies. For the delay times of 8 ms and 28 ms, the average values of ground vibration are 5.76 cm/sec and 5.75 cm/sec, respectively, which are considerably low. Also the cyclic variation in the vibration measurements with the delay time confirms the interference effect. From the application of the measurements of blasting vibration and frequency to the time theory of Langefors, it is concluded that the optimum delay times are 8 ms and 24 ms for the test site.

A Study on the Effect of the Railway Vibration on the Residents in Urban Area (도심에서 발생하는 철도진동이 인근주민에게 미치는 영향에 관한 연구)

  • Jang, Young-Hue;Kwak, Kwang-Soo;Kim, Jae-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1103-1111
    • /
    • 2000
  • With the rapid industrial development, a railway has become a main traffic means. But, rail traffic noise and vibration have become a major problem in urban area as well as a very serious issue in the living environment. Especially, noise and vibration induced by the rail operation have influenced on the residents' living nearby railway tracks. Nevertheless, adequate guidelines for the railway vibration are not yet established because of the lack of basic data and insufficient research works. In this point, the present study attempt to survey the effect and subjective response of railway vibration in urban area using questionnaire. This study also presents a basic data in establishing effective vibration plans for railway vibration in the future.

  • PDF

An Investigation on Influence of Vibration Noise in Cooling Tower on Precision Equipments (산업용 냉각탑의 진동소음이 정밀장비에 미치는 영향에 대한 연구)

  • Lee, Jin-Kab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.369-374
    • /
    • 2016
  • Cooling towers have been installed on rooftops or outside of buildings and widely applied to control the indoor temperature in residential areas and buildings. However, the noise and vibration resulting from their operation may cause problems in adjacent buildings. The purpose of this study is to measure the noise and vibration of an industrial cooling tower located adjacent to industrial plants and to investigate its influence on the surroundings according to an authorized evaluation standard. Further, in order to measure the effect of the vibration of the tower on the precision equipment inside the plant, an experiment is conducted to measure the vibration of the ground in the plant and the targeted precision equipment. The measurement results indicate that the noise in the cooling tower is 4 to 9 dB(A) higher than the maximum level defined in the standard of 68dB(A). The effect of the vibration of the tower on the precision equipment is comparatively minimal, because that in the supporting frame of the building is weaker than that on the floor where the precision equipment is located. The vibration of the floor on.